WO2021175223A1 - 苯并2-氮杂螺[4.4]壬烷类化合物及其应用 - Google Patents

苯并2-氮杂螺[4.4]壬烷类化合物及其应用 Download PDF

Info

Publication number
WO2021175223A1
WO2021175223A1 PCT/CN2021/078742 CN2021078742W WO2021175223A1 WO 2021175223 A1 WO2021175223 A1 WO 2021175223A1 CN 2021078742 W CN2021078742 W CN 2021078742W WO 2021175223 A1 WO2021175223 A1 WO 2021175223A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction solution
added
water
ethyl acetate
Prior art date
Application number
PCT/CN2021/078742
Other languages
English (en)
French (fr)
Inventor
吴凌云
杨鹏
赵乐乐
尤旭
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202180018856.XA priority Critical patent/CN115279740A/zh
Priority to US17/905,531 priority patent/US11760751B2/en
Priority to JP2022553172A priority patent/JP7307282B2/ja
Priority to EP21764222.2A priority patent/EP4116294A1/en
Publication of WO2021175223A1 publication Critical patent/WO2021175223A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to a series of benzo2-azaspiro[4.4]nonane compounds, in particular to a compound represented by formula (P) or a pharmaceutically acceptable salt thereof.
  • Sphingosine-1-phosphate is a cell membrane-derived lysophospholipid signaling molecule, which mainly stimulates some members of the G protein-coupled receptor family to perform physiological functions, mainly sphingosine-1-phosphate Sphingosine-1-phosphate receptors (S1PRs) family.
  • S1PR1 or EDG1 sphingosine-1-phosphate receptor 1
  • S1PR2 or EDG5 sphingosine-1-phosphate receptor 2
  • S1PR3 or EDG3 sphingosine-1-phosphate receptor 3
  • S1PR4 or EDG6 sphingosine-1-phosphate receptor 4
  • S1PR5 or EDG8 sphingosine-1 -Phosphate receptor 5
  • Lymphocytes perceive the S1P concentration gradient through S1PR1, thereby regulating lymphocytes from the secondary lymphatic organs into the lymph and blood circulation.
  • S1PR1 agonists can trigger S1PR1 endocytosis on the surface of lymphocytes, make lymphocytes unable to perceive S1P concentration gradients, prevent lymphocytes from migrating to lymph and blood circulation, trigger lymphocytes to homing, reduce the number of lymphocytes in the peripheral circulatory system, and prevent lymphocytes Reach the location of inflammatory damage or graft, reduce excessive inflammation, and have an immune regulation effect.
  • Autoimmune disease refers to a class of diseases caused by the body's immune response to self-antigens, causing the immune system to erroneously attack its own tissues.
  • S1PR1 agonists can effectively reduce excessive inflammation and can be used to treat or prevent autoimmune diseases, including multiple sclerosis, inflammatory bowel disease (divided into Crohn’s disease and ulcerative colitis), systemic lupus erythematosus and psoriasis Sickness etc.
  • S1PR1 agonists are used to treat or prevent autoimmune diseases.
  • Novartis' first-generation non-selective S1PRs agonist Fingolimod was approved by the FDA in September 2010 for relapsing multiple sclerosis (RMS)
  • Novartis' second-generation selective S1PR1 and S1PR5 agonist Siponimod was also in 2019 In March, it was approved by the FDA for relapsing multiple sclerosis (RMS).
  • RMS relapsing multiple sclerosis
  • the present invention provides a compound represented by formula (P) or a pharmaceutically acceptable salt thereof,
  • T 0 is selected from CH-ER 3 and N;
  • T 1 is selected from CR 4 and N;
  • E does not exist, or is selected from O and NH;
  • Ring A is selected from oxazolyl, 1,2,4-oxadiazolyl, thiazolyl, 1,3,4-thiadiazole, 1,2,4-thiadiazole, pyrimidinyl and pyrazinyl;
  • R 2 is selected from H, F, Cl, Br, CN, C 1-3 alkyl and C 1-3 alkoxy.
  • the C 1-3 alkyl and C 1-3 alkoxy are optionally selected by 1, 2 or 3 R b substitutions;
  • R 3 is selected from C 1-6 alkyl, cyclopentyl and cyclohexyl, the C 1-6 alkyl, cyclopentyl and cyclohexyl are optionally substituted with 1, 2 or 3 R c ;
  • R 4 is selected from H and cyclopentyl
  • R 5 is selected from
  • R 51 is selected from H, OH, NH 2 , CN, COOH, CH 2 COOH, CH 2 OH, C 1-3 alkoxy and -S(O) 2 -C 1-3 alkyl, the C 1- 3 alkoxy and C 1-3 alkyl optionally substituted with 1, 2 or 3 R a;
  • R 52 is selected from OH, CN, NH 2 and COOH;
  • R 53 is selected from H and OH
  • R a , R b and R c are each independently selected from F, Cl and Br;
  • n is selected from 0 and 1.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • R 2 is selected from H, F, Cl, Br, CN, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally substituted by 1, 2 or 3 R b , and others
  • the variables are as defined in the present invention.
  • R 2 is selected from H, Br, Cl, CN, CHF 2 , CF 3 and OCH 3 , and other variables are as defined in the present invention.
  • R 3 is selected from C 1-4 alkyl, The C 1-4 alkyl group, Optionally substituted by 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from CH(CH 3 ) 2 , CHF 2 , CH 2 CH(CH 3 ) 2
  • Other variables are as defined in the present invention.
  • R 51 is selected from H, OH, NH 2 , CN, COOH, CH 2 COOH, CH 2 OH, OCH 3 and -S(O) 2 CH 3 , the OCH 3 and- S (O) 2 CH 3 optionally substituted by 1, 2 or 3 R a, the other variables are as defined in the present invention.
  • R 51 is selected from OH, NH 2 , CN, CH 2 COOH, CH 2 OH, OCH 3 and -S(O) 2 CH 3 , and other variables are as defined in the present invention.
  • R 52 is selected from CN, NH 2 and COOH, and other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • T 0 , T 1 , R 53 , n, ring A, R 2 , R 51 and R 52 are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • R 2 , R 3 , T 1 , E and n are as defined in the present invention.
  • T 2 is selected from O and S;
  • T 3 is selected from CH and N;
  • T 4 is selected from CH
  • T 5 is selected from N
  • T 4 is selected from N
  • T 5 is selected from CH
  • the present invention provides a compound represented by the following formula or a pharmaceutically acceptable salt thereof,
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • the present invention also provides the application of the compound or its pharmaceutically acceptable salt in the preparation of medicines for treating diseases related to S1PR1.
  • the present invention also provides the following solutions:
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • T 1 is selected from CH and N;
  • E is selected from O and NH
  • Ring A is selected from oxazolyl, 1,2,4-oxadiazolyl, thiazole, 1,3,4-thiadiazole, 1,2,4-thiadiazolyl, pyrimidinyl and pyrazinyl;
  • R 1 is selected from H, OH, NH 2 , CN, COOH, CH 2 COOH, C 1-3 alkoxy and -S(O) 2 -C 1-3 alkyl, the C 1-3 alkoxy and C 1-3 alkyl optionally substituted with 1, 2 or 3 R a;
  • R 2 is selected from the group consisting of F, Cl, Br, CN and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R b ;
  • R 3 is selected from C 1-6 alkyl and cyclopentyl, the C 1-6 alkyl and cyclopentyl are optionally substituted with 1, 2 or 3 R c ;
  • R a , R b and R c are each independently selected from F, Cl and Br.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • R 1 is selected from H, OH, NH 2 , CN, COOH, CH 2 COOH, OCH 3 and -S(O) 2 CH 3 , the OCH 3 and -S(O) 2 CH 3 optionally substituted by 1, 2 or 3 R a, the other variables are as defined in the present invention.
  • R 1 is selected from OH, NH 2 , CN, CH 2 COOH, OCH 3 and -S(O) 2 CH 3 , and other variables are as defined in the present invention.
  • R 2 is selected from F, Cl, Br, CN, and CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 2 is selected from Cl, Br, CN and CHF 2 , and other variables are as defined in the present invention.
  • R 3 is selected from C 1-3 alkyl groups and The C 1-3 alkyl group and Optionally substituted by 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from CHF 2 , CH(CH 3 ) 2 and Other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • R 1 , R 2 , R 3 , T 1 and E are as defined in the present invention.
  • T 2 is selected from O and S;
  • T 3 is selected from CH and N;
  • T 4 is selected from CH
  • T 5 is selected from N
  • T 4 is selected from N
  • T 5 is selected from CH
  • the present invention also provides the following solutions:
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • T 1 is selected from CH and N;
  • E is selected from O and NH
  • Ring A is selected from oxazolyl, 1,2,4-oxadiazolyl, thiazole, 1,3,4-thiadiazole, 1,2,4-thiadiazolyl, pyrimidinyl and pyrazinyl;
  • R 1 is selected from OH, CN, NH 2 and COOH;
  • R 2 is selected from the group consisting of F, Cl, Br, CN and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R b ;
  • R 3 is selected from C 1-6 alkyl and cyclopentyl, the C 1-6 alkyl and cyclopentyl are optionally substituted with 1, 2 or 3 R c ;
  • R b and R c are each independently selected from F, Cl and Br;
  • n is selected from 0 or 1.
  • the above-mentioned ring A is selected from And, other variables are as defined in the present invention
  • R 1 is selected from CN, NH 2 and COOH, and other variables are as defined in the present invention.
  • R 2 is selected from F, Cl, Br, CN, and CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 2 is selected from Br, CN and CHF 2 , and other variables are as defined in the present invention.
  • R 3 is selected from C 1-3 alkyl groups and The C 1-3 alkyl group and Optionally substituted by 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from CH(CH 3 ) 2 , CHF 2 and Other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • R 2 , R 3 , T 1 , E and n are as defined in the present invention.
  • T 2 is selected from O and S;
  • T 3 is selected from CH and N.
  • the present invention also provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • T 1 is selected from CH and N;
  • E is selected from O and NH
  • Ring A is selected from oxazolyl, 1,2,4-oxadiazolyl, thiazole, 1,3,4-thiadiazole, 1,2,4-thiadiazolyl, pyrimidinyl and pyrazinyl;
  • R 1 is selected from OH, CN, NH 2 and COOH;
  • R 2 is selected from the group consisting of F, Cl, Br, CN and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R b ;
  • R 3 is selected from C 1-6 alkyl and cyclopentyl, the C 1-6 alkyl and cyclopentyl are optionally substituted with 1, 2 or 3 R c ;
  • R b and R c are each independently selected from F, Cl and Br;
  • n is selected from 0 or 1.
  • the above-mentioned ring A is selected from And, other variables are as defined in the present invention
  • R 1 is selected from COOH, and other variables are as defined in the present invention.
  • R 2 is selected from F, Cl, Br, CN, and CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 2 is selected from Br, CN and CHF 2 , and other variables are as defined in the present invention.
  • R 3 is selected from C 1-3 alkyl groups and The C 1-3 alkyl group and Optionally substituted by 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from CH(CH 3 ) 2 , CHF 2 and Other variables are as defined in the present invention.
  • the compound of the present invention has significant or unexpected S1PR1 agonistic activity, good bioavailability, and can significantly inhibit lymphocytes.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. Generally, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or an organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by a substituent.
  • the substituent may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the compound after substitution Is stable.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the connection method of the chemical bond is not positioned, and there is a H atom at the connectable site, when the chemical bond is connected, the number of H atoms at the site will correspondingly decrease with the number of chemical bonds connected to become the corresponding valence. ⁇
  • the chemical bond between the site and other groups can be a straight solid bond Straight dashed key Or wavy line Express.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy line in indicates that the phenyl group is connected to other groups through the 1 and 2 carbon atoms;
  • C 1-6 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 6 carbon atoms.
  • the C 1-6 alkyl group includes C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 and C 5 alkyl groups, etc.; it may Is monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine).
  • C 1-6 alkyl examples include but are not limited to methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl, etc.
  • C 1-4 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 4 carbon atoms.
  • the C 1-4 alkyl group includes C 1-2 , C 1-3 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent ( Such as methine).
  • Examples of C 1-4 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl) and so on.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , including any range from n to n+m, for example, C 1- 12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; similarly, from n to n +m member means that the number of atoms in the ring is n to n+m, for example, 3-12 membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered ring, and 9-membered ring, and 9
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. E.g. single crystal X-ray diffractometry
  • SXRD Bruker D8venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • the pH value of the aqueous phase was adjusted to 3 with 1M aqueous hydrochloric acid solution, extracted with ethyl acetate (1000 mL ⁇ 3), and the combined organic phases were washed with saturated brine (1000 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the crude product was added to a mixed solution of ethyl acetate (160 mL) and n-heptane (960 mL), stirred at 20° C. for 16 hours, filtered, and the filter cake was vacuum dried to obtain compound 1d.
  • reaction solution was concentrated, and the crude product was subjected to high performance liquid chromatography ⁇ hydrochloric acid conditions, column model: 3_Phenomenex Luna C18 75*30mm*3 ⁇ m; mobile phase: [water (0.05% HCl)-acetonitrile]; acetonitrile%: 60%-80% , 7.5 minutes ⁇ purified to obtain compound 3.
  • reaction solution was concentrated, and the crude product was subjected to high performance liquid chromatography ⁇ hydrochloric acid conditions, column model: 3_Phenomenex Luna C18 75*30mm*3 ⁇ m; mobile phase: [water (0.05% HCl)-acetonitrile]; acetonitrile%: 57%-77% , 7.5 minutes ⁇ purified to obtain compound 4.
  • reaction solution was concentrated, and the crude product was subjected to high performance liquid chromatography ⁇ hydrochloric acid conditions, column model: 3_Phenomenex Luna C18 75*30mm*3 ⁇ m; mobile phase: [water (0.05% HCl)-acetonitrile]; acetonitrile%: 52%-72% , 6.5 minutes ⁇ purified to obtain compound 5.
  • reaction solution was concentrated under reduced pressure, the residue was diluted with water (200 mL), extracted with ethyl acetate (200 mL ⁇ 2), the combined organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the reaction solution was concentrated under reduced pressure, diluted with water (50mL), extracted with ethyl acetate (30mL ⁇ 3), and the combined organic phase was washed with water (20mL ⁇ 2) and saturated brine (20mL ⁇ 2), anhydrous sodium sulfate Dry, filter, and concentrate the filtrate under reduced pressure.
  • the crude product is subjected to high performance liquid chromatography ⁇ hydrochloric acid conditions, column model: Phenomenex Luna C18 150*25mm*10 ⁇ m; mobile phase: [water (0.05%HCl)-acetonitrile]; B% : 52%-82%, 10 minutes ⁇ Purification to obtain compound 11.
  • the reaction solution was concentrated under reduced pressure, diluted with water (50mL), extracted with ethyl acetate (30mL ⁇ 3), and the combined organic phase was washed with water (20mL ⁇ 2) and saturated brine (40mL ⁇ 1), anhydrous sodium sulfate Dry, filter, and concentrate the filtrate under reduced pressure.
  • the crude product is subjected to high performance liquid chromatography ⁇ hydrochloric acid conditions, column model: Phenomenex Luna C18 150*25mm*10 ⁇ m; mobile phase: [water (0.05% HCl)-acetonitrile]; acetonitrile% : 50%-80%, 10 minutes ⁇ Purification to obtain compound 12.
  • reaction solution was concentrated under reduced pressure, diluted with water (200 mL), extracted with ethyl acetate (100 mL ⁇ 3), the combined organic phase was washed with saturated brine (200 mL ⁇ 1), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure
  • reaction solution was concentrated under reduced pressure, the residue was diluted with water (15mL), extracted with ethyl acetate (15mL ⁇ 2), the combined organic phase was washed with saturated brine (20mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was reduced It was concentrated under pressure to obtain 14 g of the crude compound.
  • the reaction solution was filtered, the filter cake was washed with ethyl acetate (20mL), the filtrate was washed with 1M aqueous hydrochloric acid (30mL), concentrated under reduced pressure, the residue was diluted with water (20mL), extracted with dichloromethane (30mL ⁇ 2), and the organic phases were combined It was washed with water (30 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain the crude product.
  • the reaction solution was concentrated under reduced pressure, the crude product was diluted with water (15mL), extracted with ethyl acetate (15mL ⁇ 2), the combined organic phase was washed with saturated brine (20mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was depressurized Concentrate to obtain the crude compound 15d.
  • reaction solution was concentrated under reduced pressure, diluted with water (80 mL), extracted with ethyl acetate (40 mL ⁇ 4), the combined organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain the crude compound 16c.
  • Dissolve compound 1d (100g, 487mmol) in dichloromethane (500mL), slowly add thionyl chloride (116g, 975mmol, 70.7mL), and then add N,N-dimethylformamide (35.6mg, 487 ⁇ mol) .
  • the reaction solution was stirred at 25°C for 16 hours.
  • the reaction solution was concentrated under reduced pressure, and the crude product was added to a mixed solution of n-heptane/ethyl acetate (1:10, 220 mL), and stirred at 25° C. for 3 hours. After filtration, the filter cake was washed with n-heptane (50 mL ⁇ 2), and dried under reduced pressure to obtain compound 21a.
  • the compound 21d (50.0mg, 162 ⁇ mol), compound 14b (76.8mg, 163 ⁇ mol), potassium carbonate (67.5mg, 488 ⁇ mol) and tetrakis (triphenylphosphine) palladium (18.8mg, 16.3 ⁇ mol) were accurately weighed in a microwave tube , And then add water (0.5 mL) and ethylene glycol dimethyl ether (1.5 mL) to the microwave tube. The reaction solution was stirred under microwave heating at 100°C for 40 minutes.
  • reaction solution was concentrated under reduced pressure, the residue was diluted with water (50mL), extracted with dichloromethane (50mL ⁇ 3), the combined organic phases were washed with saturated brine (30mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the filtrate was depressurized Concentrate to obtain compound 21e.
  • Compound 22A MS-ESI calculated value [M+H] + 499, measured value 499.
  • reaction solution was diluted with water (15 mL), extracted with ethyl acetate (15 mL ⁇ 2), the combined organic phase was washed with saturated sodium chloride (20 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain the compound 25a.
  • Dissolve compound 28a (210mg, 807mmol) in acetonitrile (5mL), add tert-butyl nitrite (166mg, 1.61mmol) and copper bromide (360mg, 1.61mmol) to the mixture at 0°C, and react The solution was stirred at 20°C for 1 hour, and the reaction solution was stirred at 70°C for 2 hours. 1M aqueous hydrochloric acid (10mL) was added to the reaction solution, extracted with ethyl acetate (30mL ⁇ 2), and the organic phases were combined.
  • reaction solution was concentrated under reduced pressure, and the crude product was subjected to high performance liquid chromatography ⁇ hydrochloric acid conditions, column model: 3_Phenomenex Luna C18 75 ⁇ 30mm ⁇ 3 ⁇ m; mobile phase: [water (0.05%HCl)-acetonitrile]; acetonitrile%: 30%-50 %, 7 minutes ⁇ Purification to obtain the hydrochloride salt of compound 28.
  • the crude product is subjected to high performance liquid chromatography ⁇ hydrochloric acid conditions, column model: Boston Green ODS150*30mm*5 ⁇ m; mobile phase: [Water (0.05% hydrochloric acid)-acetonitrile]; Acetonitrile%: 32%-62%, 8 minutes ⁇
  • the hydrochloride salt of compound 33 was obtained by purification.
  • the crude product was purified by high performance liquid chromatography (column: Phenomenex Gemini-NX C18 75 ⁇ 30mm ⁇ 3um; mobile phase: [water (0.225% FA)-acetonitrile]; acetonitrile%: 45%-75%, 7min) to obtain the compound 37 formate.
  • the crude product was separated by high performance liquid chromatography (column: Phenomenex Gemini-NX C18 75 ⁇ 30mm ⁇ 3 ⁇ m; mobile phase: 10mmol/L ammonium bicarbonate aqueous solution-acetonitrile; gradient: acetonitrile 44%-74%, 10min) to obtain compound 40 .
  • reaction solution was added to 10% sodium bicarbonate solution (50mL), extracted with dichloromethane (30mL ⁇ 3), the organic phases were combined, dried over anhydrous sodium sulfate, concentrated under reduced pressure and passed through silica gel column chromatography (petroleum ether) /Ethyl acetate, 4/1 ⁇ 1/1, V/V) to obtain intermediate 43f.
  • reaction solution was added to water (20mL) and used Extract with ethyl acetate (30mL ⁇ 2), combine the organic phases, dry over anhydrous sodium sulfate, concentrate under reduced pressure and pass through silica gel column chromatography (petroleum ether/ethyl acetate, 100/1 ⁇ 10/1, V/V) The obtained intermediate 46b.
  • Test Example 1 In vitro evaluation of S1PR1 agonistic activity of the compounds of the present invention
  • cells are cultured with the sample to be tested to induce a reaction
  • the storage solution to be tested is diluted 5 times to buffer solution
  • % Activity 100% ⁇ (average test sample RLU-average solvent RLU)/(average maximum control ligand-average solvent RLU)
  • Test Example 2 In vitro evaluation of the compound of the present invention on S1PR1 agonistic activity
  • Test Example 3 Evaluation of the pharmacokinetics of the compound in rats
  • the rodent pharmacokinetic characteristics of the compound after intravenous injection and oral administration were tested by standard protocols.
  • the candidate compound was prepared into a clear solution and given to rats by a single intravenous injection and oral administration.
  • the vehicle for intravenous injection was 5:95 DMSO and 10% hydroxypropyl beta cyclodextrin aqueous solution, and the oral vehicle was 0.5% w/v methyl cellulose and 0.2% w/v Tween 80 aqueous solution.
  • the compound of the present invention shows better bioavailability, higher area under the drug-time curve and lower clearance rate in the pharmacokinetics of SD rats.
  • CD-1 mice male, 20-40g, 6-10 weeks old, Shanghai BK
  • the rodent pharmacokinetic characteristics of the compound after intravenous injection and oral administration were tested by standard protocols.
  • the candidate compound was formulated into a clear solution or suspension and was given to two mice with a single intravenous injection and oral administration, respectively.
  • the vehicle for intravenous injection was 5:95 DMSO and 10% hydroxypropyl ⁇ cyclodextrin aqueous solution, and the oral vehicle was 0.5% w/v methyl cellulose and 0.2% w/v Tween 80 aqueous solution.
  • the compound of the present invention shows better bioavailability, higher area under the drug-time curve and lower clearance rate in the pharmacokinetics of CD-1 mice.
  • Test Example 5 Evaluation of the pharmacokinetics of the compound at different doses in rats
  • the pharmacokinetic characteristics of SD rats after oral administration of the compounds were tested by a standard protocol.
  • the candidate compound was prepared into a clear solution and administered to the rats for a single oral administration.
  • the solvent of compound 1A and 1B is 0.5% carboxymethyl cellulose + 0.2% Tween 80.

Abstract

公开了一系列苯并2-氮杂螺[4.4]壬烷类化合物,具体公开了式(P)所示化合物或其药学上可接受的盐。

Description

苯并2-氮杂螺[4.4]壬烷类化合物及其应用
本发明主张如下优先权:
CN202010144413.2,申请日:2020年03月04日;
CN202010464132.5,申请日:2020年05月27日;
CN202010144397.7,申请日:2020年03月04日;
CN202010464155.6,申请日:2020年05月27日;
CN202010902712.8,申请日:2020年09月01日。
技术领域
本发明涉及一系列苯并2-氮杂螺[4.4]壬烷类化合物,具体涉及式(P)所示化合物或其药学上可接受的盐。
背景技术
鞘氨醇-1-磷酸(Sphingosine-1-phosphate,S1P)是细胞膜衍生的溶血磷脂信号分子,主要通过刺激部分G蛋白偶联受体家族成员发挥生理功能,主要是鞘氨醇-1-磷酸受体(Sphingosine-1-phosphate receptors,S1PRs)家族,目前,在哺乳动物中发现鉴定了五种不同的S1PR亚型,鞘氨醇-1-磷酸受体1(S1PR1或者EDG1),鞘氨醇-1-磷酸受体2(S1PR2或者EDG5),鞘氨醇-1-磷酸受体3(S1PR3或者EDG3),鞘氨醇-1-磷酸受体4(S1PR4或者EDG6),鞘氨醇-1-磷酸受体5(S1PR5或者EDG8)。S1PR1-3广泛表达于各种组织,S1PR4主要在淋巴系统和血液系统中表达,S1PR5主要在中枢神经系统中表达。淋巴细胞通过S1PR1感知S1P浓度梯度,从而调控淋巴细胞从次级淋巴器官进入淋巴和血液循环。S1PR1激动剂可以引发淋巴细胞表面S1PR1内吞,使淋巴细胞无法感知S1P浓度梯度,阻止淋巴细胞向淋巴和血液循环的迁移,引发淋巴细胞归巢,减少外周循环系统中淋巴细胞数量,阻止淋巴细胞达到炎性损害或移植物的位置,减少过度的炎症,具有免疫调控作用。
自身免疫疾病是指机体对自身抗原发生免疫反应,使免疫系统错误的攻击自身组织所导致的一类疾病的统称,目前确切定义的超过80种,过度的炎症反应是共有的特征。S1PR1激动剂可以有效减少过度炎症,可用于治疗或预防自身免疫性疾病,包括多发性硬化症,炎症性肠病(分为克罗恩病和溃疡性结肠炎),系统性红斑狼疮和银屑病等。
目前S1PR1激动剂的体内药效研究用于治疗或预防自身免疫性疾病。诺华公司第一代非选择性的S1PRs激动剂Fingolimod在2010年9月被FDA批准用于复发型多发性硬化(RMS),诺华公司第二代选择性的S1PR1和S1PR5激动剂Siponimod也在2019年3月被FDA批准用于复发型多发性硬化(RMS)。发现和应用新型S1PR激动剂具有广阔的前景。
发明内容
本发明提供了式(P)所示化合物或其药学上可接受的盐,
Figure PCTCN2021078742-appb-000001
其中,
T 0选自CH-E-R 3和N;
T 1选自CR 4和N;
E不存在,或选自O和NH;
环A选自恶唑基、1,2,4-恶二唑基、噻唑基、1,3,4-噻二唑、1,2,4-噻二唑基、嘧啶基和吡嗪基;
R 2选自H、F、Cl、Br、CN、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R b取代;
R 3选自C 1-6烷基、环戊基和环己基,所述C 1-6烷基、环戊基和环己基任选被1、2或3个R c取代;
R 4选自H和环戊基;
R 5选自
Figure PCTCN2021078742-appb-000002
R 51选自H、OH、NH 2、CN、COOH、CH 2COOH、CH 2OH、C 1-3烷氧基和-S(O) 2-C 1-3烷基,所述C 1-3烷氧基和C 1-3烷基任选被1、2或3个R a取代;
R 52选自OH、CN、NH 2和COOH;
R 53选自H和OH;
R a、R b和R c分别独立地选自F、Cl和Br;
n选自0和1。
在本发明的一些方案中,上述环A选自
Figure PCTCN2021078742-appb-000003
Figure PCTCN2021078742-appb-000004
其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自H、F、Cl、Br、CN、CH 3和OCH 3,所述CH 3和OCH 3任选被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自H、Br、Cl、CN、CHF 2、CF 3和OCH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自C 1-4烷基、
Figure PCTCN2021078742-appb-000005
所述C 1-4烷基、
Figure PCTCN2021078742-appb-000006
Figure PCTCN2021078742-appb-000007
任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CH(CH 3) 2、CHF 2、CH 2CH(CH 3) 2
Figure PCTCN2021078742-appb-000008
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2021078742-appb-000009
选自
Figure PCTCN2021078742-appb-000010
Figure PCTCN2021078742-appb-000011
其他变量如本发明所定义。
在本发明的一些方案中,上述R 51选自H、OH、NH 2、CN、COOH、CH 2COOH、CH 2OH、OCH 3和-S(O) 2CH 3,所述OCH 3和-S(O) 2CH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 51选自OH、NH 2、CN、CH 2COOH、CH 2OH、OCH 3和-S(O) 2CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2021078742-appb-000012
选自
Figure PCTCN2021078742-appb-000013
Figure PCTCN2021078742-appb-000014
其他变量如本发明所定义。
在本发明的一些方案中,上述R 52选自CN、NH 2和COOH,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2021078742-appb-000015
选自
Figure PCTCN2021078742-appb-000016
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021078742-appb-000017
其中,T 0、T 1、R 53、n、环A、R 2、R 51和R 52如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021078742-appb-000018
其中,
R 2、R 3、T 1、E和n如本发明所定义;
T 2选自O和S;
T 3选自CH和N;
T 4选自CH,T 5选自N,或T 4选自N,T 5选自CH。
本发明还有一些方案是由上述变量任意组合而来。
本发明提供了下式所示化合物或其药学上可接受的盐,
Figure PCTCN2021078742-appb-000019
Figure PCTCN2021078742-appb-000020
Figure PCTCN2021078742-appb-000021
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021078742-appb-000022
本发明还提供了化合物或其药学上可接受的盐在制备治疗与S1PR1相关疾病的药物中的应用。
本发明还提供了下列方案:
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021078742-appb-000023
其中,
T 1选自CH和N;
E选自O和NH;
环A选自恶唑基、1,2,4-恶二唑基、噻唑、1,3,4-噻二唑、1,2,4-噻二唑基、嘧啶基和吡嗪基;
R 1选自H、OH、NH 2、CN、COOH、CH 2COOH、C 1-3烷氧基和-S(O) 2-C 1-3烷基,所述C 1-3烷氧基和C 1-3烷基任选被1、2或3个R a取代;
R 2选自F、Cl、Br、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R b取代;
R 3选自C 1-6烷基和环戊基,所述C 1-6烷基和环戊基任选被1、2或3个R c取代;
R a、R b和R c分别独立地选自F、Cl和Br。
在本发明的一些方案中,上述环A选自
Figure PCTCN2021078742-appb-000024
Figure PCTCN2021078742-appb-000025
其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自H、OH、NH 2、CN、COOH、CH 2COOH、OCH 3和-S(O) 2CH 3,所述OCH 3和-S(O) 2CH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自OH、NH 2、CN、CH 2COOH、OCH 3和-S(O) 2CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl、Br、CN和CH 3,所述CH 3任选被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自Cl、Br、CN和CHF 2,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自C 1-3烷基和
Figure PCTCN2021078742-appb-000026
所述C 1-3烷基和
Figure PCTCN2021078742-appb-000027
任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CHF 2、CH(CH 3) 2
Figure PCTCN2021078742-appb-000028
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2021078742-appb-000029
选自
Figure PCTCN2021078742-appb-000030
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021078742-appb-000031
其中,
R 1、R 2、R 3、T 1和E如本发明所定义;
T 2选自O和S;
T 3选自CH和N;
T 4选自CH,T 5选自N,或T 4选自N,T 5选自CH。
本发明还有一些方案是由上述变量任意组合而来。
本发明还提供了下列方案:
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021078742-appb-000032
其中,
T 1选自CH和N;
E选自O和NH;
环A选自恶唑基、1,2,4-恶二唑基、噻唑、1,3,4-噻二唑、1,2,4-噻二唑基、嘧啶基和吡嗪基;
R 1选自OH、CN、NH 2和COOH;
R 2选自F、Cl、Br、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R b取代;
R 3选自C 1-6烷基和环戊基,所述C 1-6烷基和环戊基任选被1、2或3个R c取代;
R b和R c分别独立地选自F、Cl和Br;
n选自0或1。
在本发明的一些方案中,上述环A选自
Figure PCTCN2021078742-appb-000033
Figure PCTCN2021078742-appb-000034
和,其他变量如本发明所定义
Figure PCTCN2021078742-appb-000035
在本发明的一些方案中,上述R 1选自CN、NH 2和COOH,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl、Br、CN和CH 3,所述CH 3任选被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自Br、CN和CHF 2,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自C 1-3烷基和
Figure PCTCN2021078742-appb-000036
所述C 1-3烷基和
Figure PCTCN2021078742-appb-000037
任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CH(CH 3) 2、CHF 2
Figure PCTCN2021078742-appb-000038
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2021078742-appb-000039
选自
Figure PCTCN2021078742-appb-000040
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021078742-appb-000041
其中,
R 2、R 3、T 1、E和n如本发明所定义;
T 2选自O和S;
T 3选自CH和N。
本发明还有一些方案是由上述变量任意组合而来。
本发明还提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021078742-appb-000042
其中,
T 1选自CH和N;
E选自O和NH;
环A选自恶唑基、1,2,4-恶二唑基、噻唑、1,3,4-噻二唑、1,2,4-噻二唑基、嘧啶基和吡嗪基;
R 1选自OH、CN、NH 2和COOH;
R 2选自F、Cl、Br、CN和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R b取代;
R 3选自C 1-6烷基和环戊基,所述C 1-6烷基和环戊基任选被1、2或3个R c取代;
R b和R c分别独立地选自F、Cl和Br;
n选自0或1。
在本发明的一些方案中,上述环A选自
Figure PCTCN2021078742-appb-000043
Figure PCTCN2021078742-appb-000044
和,其他变量如本发明所定义
Figure PCTCN2021078742-appb-000045
在本发明的一些方案中,上述R 1选自COOH,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自F、Cl、Br、CN和CH 3,所述CH 3任选被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自Br、CN和CHF 2,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自C 1-3烷基和
Figure PCTCN2021078742-appb-000046
所述C 1-3烷基和
Figure PCTCN2021078742-appb-000047
任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CH(CH 3) 2、CHF 2
Figure PCTCN2021078742-appb-000048
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2021078742-appb-000049
选自
Figure PCTCN2021078742-appb-000050
其他变量如本发明所定义。
本发明还有一些方案是由上述变量任意组合而来。
技术效果
本发明化合物具有显著甚至意料不到的S1PR1激动活性,较好的生物利用度,可以显著抑制淋巴细胞。
相关定义
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物 与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021078742-appb-000051
直形虚线键
Figure PCTCN2021078742-appb-000052
或波浪线
Figure PCTCN2021078742-appb-000053
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2021078742-appb-000054
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021078742-appb-000055
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2021078742-appb-000056
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2021078742-appb-000057
这4种连接方式,即使-N-上 画出了H原子,但是
Figure PCTCN2021078742-appb-000058
仍包括
Figure PCTCN2021078742-appb-000059
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,术语“C 1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C 1-6烷基包括C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C 1-4烷基”用于表示直链或支链的由1至4个碳原子组成的饱和碳氢基团。所述C 1-4烷基包括C 1-2、C 1-3和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-4烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1- 12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法
(SXRD),把培养出的单晶用Bruker D8venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021078742-appb-000060
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021078742-appb-000061
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1
Figure PCTCN2021078742-appb-000062
合成路线:
Figure PCTCN2021078742-appb-000063
第一步
将化合物1a(500g,2.50mol)和异丙醇(180g,3.00mol)溶于N,N-二甲基甲酰胺(2500mL),向反应液中加入氢氧化钠(281g,5.00mol),然后反应液在25℃下搅拌12小时。反应液过滤,滤液减压浓缩,剩余物加水(10L)稀释,用乙酸乙酯(2L×3)萃取,合并有机相用饱和食盐水(2L×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物1b。
MS-ESI计算值[M+H] +240和242,实测值240和242。
第二步
将化合物1b(180g,750mmol)溶于N,N-二甲基甲酰胺(180mL)和甲醇(720mL)中,向反应液中加入乙酸钾(147g,1.50mol)和1,1-双(二苯基磷)二茂铁氯化钯(16.46g,22.49mmol),然后用一氧化碳置换反应体系中的气体,反应液在一氧化碳(50PSI)氛围下80℃搅拌19小时。反应液过滤,滤液减压浓缩,剩余物用水(3L)稀释,用乙酸乙酯(1L×3)萃取,合并有机相用饱和食盐水(1L×2)洗涤,无水硫酸钠干燥,过滤,滤液减压干燥浓缩得到粗产品。粗产品经硅胶柱层析法(5:1,石油醚/乙酸乙酯,Rf=0.45)分离纯化得到化合物1c。
1H NMR(400MHz,CDCl 3)δ=8.23(d,J=1.7Hz,1H),8.20-8.14(m,1H),6.99(d,J=9.0Hz,1H),4.81-4.69(m,1H),3.91(s,3H),1.43(d,J=6.0Hz,6H)。
第三步
将化合物1c(432g,1.91mol)溶于甲醇(860mL)中,将一水合氢氧化锂(161g,3.83mol)的水(860mL)溶液分批加入到上述反应液中,反应液在25℃下搅拌4小时。反应液减压浓缩去除有机溶剂,剩余物用乙酸乙酯(800mL×2)洗涤。用1M盐酸水溶液将水相pH值调至3,用乙酸乙酯(1000mL×3)萃取,合并有机相用饱和食盐水(1000mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品加入到乙酸乙酯(160mL)和正庚烷(960mL)的混合溶液中,在20℃下搅拌16小时,过滤,滤饼真空干燥得到化合物1d。
1H NMR(400MHz,CDCl 3)δ=8.32(d,J=2.2Hz,1H),8.25(dd,J=2.2,8.9Hz,1H),7.04(d,J=9.2Hz,1H),4.84-4.73(m,1H),1.47(d,J=6.1Hz,6H)。
第四步
将化合物1f(56.0g,308mmol)溶于N,N-二甲基甲酰胺(200mL)中,加入叔丁醇钾(34.6g,308mmol),反应液在25℃下搅拌2小时,然后慢慢加入化合物1e(50.0g,237mmol),反应液在25℃下搅拌12小时。向反应液中加入水(800mL),用乙酸乙酯(400mL×3)萃取,合并有机相,有机相分别用水(500mL×1)和饱和食盐水(500mL×1)洗涤,无水硫酸钠干燥,浓缩,粗品经柱层析法(10:1,石油醚/乙酸乙酯,Rf=0.6,0.7)分离纯化得到化合物1g。
MS-ESI计算值[M+H] +267和269,实测值267和269。
1H NMR(400MHz,CDCl 3)δ=7.57-7.48(m,1H),7.39-7.29(m,1H),7.24-7.10(m,1H),6.55-6.27(m,1H),3.81-3.70(m,3H),3.63-3.37(m,2H),3.33-3.00(m,2H)。
第五步
将化合物1g(100g,374mmol)溶于二甲基亚砜(400mL)中,加入碳酸铯(97.6g,299mmol),慢慢滴加硝基甲烷(68.6g,1.12mol),反应液在70℃下搅拌16小时。加水(1600mL)淬灭反应,用乙酸乙酯(800mL×3)萃取,合并有机相分别用水(1000mL×1)和饱和食盐水(1000mL×1)洗涤, 无水硫酸钠干燥,浓缩得化合物1h。
1H NMR(400MHz,CDCl 3)δ=7.41(dd,J=7.2,1.6Hz,1H),7.12-7.04(m,2H),4.89(d,J=11.6Hz,1H),4.81(d,J=11.6Hz,1H),3.86(s,3H),3.04-2.96(m,3H),2.78(d,J=16.4Hz,1H),2.44-2.35(m,1H),2.26-2.16(m,1H)。
第六步
将化合物1h(100g,305mmol)溶于乙醇(300mL)和水(100mL)的混合溶剂中,加入氯化铵(48.90g,914mmol)和铁粉(51.1g,914mmol),反应液在80℃下搅拌15小时。反应液用硅藻土过滤,滤液加水(1000mL)稀释,用乙酸乙酯(500mL×3)萃取,合并有机相分别用饱和食盐水(500mL×1)洗涤,无水硫酸钠干燥,浓缩,将粗产品加入至乙酸乙酯/正庚烷混合溶液(1:6,1180mL)中,25℃下搅拌3天,过滤,滤饼真空干燥得化合物1i。
MS-ESI计算值[M+H] +266和268,实测值266和268。
1H NMR(400MHz,CDCl 3)δ=7.52-7.32(m,1H),7.25-7.06(m,2H),7.06-6.87(m,1H),3.63-3.32(m,2H),3.08-2.83(m,2H),2.69-2.41(m,2H),2.36-2.10(m,2H)。
第七步
将化合物1i(2.00g,7.52mmol)溶于无水四氢呋喃(20mL)中,向反应液中分批缓慢加入氢化铝锂(570mg,15.0mmol),反应液在70℃下搅拌3小时。反应液加入饱和氯化铵溶液(50mL)淬灭,过滤,收集滤液减压浓缩。剩余物用水(100mL)稀释,用乙酸乙酯(100mL×2)萃取,合并的有机相用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品化合物1j。
MS-ESI计算值[M+H] +252和254,实测值252和254。
第八步
将化合物1j(1.22g,4.84mmol)溶于无水二氯甲烷(20mL)中,向混合液中加入二碳酸二叔丁酯(1.27g,5.81mmol)和三乙胺(1.18g,11.6mmol),反应液在25℃下搅拌2小时。反应液浓缩,粗品经硅胶柱层析法分离(5:1,石油醚/乙酸乙酯,Rf=0.7)纯化得到化合物1k。
MS-ESI计算值[M+H- tBu] +296和298,实测值296和298。
第九步
将化合物1k(1.44g,4.09mmol),氰化锌(720mg,6.13mmol)和2-二环己基磷-2,4,6-三异丙基联苯(156mg,327μmol)溶于无水N,N-二甲基甲酰胺(20mL)中,氮气保护下,向混合液中加入三(二亚苄基丙酮)二钯(150mg,164μmol),反应液在90℃下搅拌12小时。反应液加入水(100mL)稀释,用乙酸乙酯(100mL×2)萃取,合并的有机相用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经硅胶柱层析法分离(5:1,石油醚/乙酸乙酯,Rf=0.25)纯化得到化合物1l。
MS-ESI计算值[M+H- tBu] +243,实测值243。
第十步
将化合物1l(720mg,2.41mmol)溶于无水乙醇(10mL)中,向混合液中加入盐酸羟胺(502mg,7.22mmol)和三乙胺(731mg,7.22mmol),反应液在80℃下搅拌3小时。反应液减压浓缩,向剩余物中加入水(25mL)稀释,反应液变浑浊,过滤,滤饼真空干燥,得到粗品化合物1m。
MS-ESI计算值[M+H] +332,实测值332。
第十一步
将化合物1d(495mg,2.41mmol)溶于无水N,N-二甲基甲酰胺(10mL)中,向混合液中加入1-羟基苯并三氮唑(391mg,2.90mmol)和N-(3-二甲基氨丙基)-N-乙基碳二亚胺(555mg,2.90mmol),反应液在25℃下搅拌1小时。向混合液中加入将化合物1m(800mg,2.41mmol),反应液在25℃下搅拌1小时,80℃下搅拌16小时。反应液加入水(50mL)稀释,用乙酸乙酯(500mL×3)萃取,合并的有机相用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经柱层析法分离(3:1,石油醚/乙酸乙酯,Rf=0.4),纯化得到化合物1n。
MS-ESI计算值[M+H- tBu] +445,实测值445。
第十二步
将化合物1n(750mg,1.50mmol)溶于乙酸乙酯(5mL)中,向混合液中加入盐酸/乙酸乙酯(4M,1.87mL),反应液在25℃下搅拌1小时。反应液减压浓缩得到粗品化合物1o的盐酸盐。
MS-ESI计算值[M+H] +401,实测值401。
1H NMR(400MHz,CDCl 3)δ=8.41(d,J=2.1Hz,1H),8.34(dd,J=2.1,8.9Hz,1H),8.10(d,J=7.7Hz,1H),7.60-7.40(m,2H),7.13(d,J=9.0Hz,1H),4.88-4.73(m,1H),3.91-3.35(m,6H),2.51-2.19(m,4H),1.48(d,J=6.1Hz,6H)。
第十三步
将化合物1o(7.83mg,103μmol)溶于无水二氯甲烷(2mL)中,向混合液中加入2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(65.3mg,172μmol),反应液在25℃下搅拌0.5小时。向混合液中加入化合物1p的盐酸盐(50mg,114μmol)和三乙胺(34.7mg,343μmol),反应液在25℃下搅拌0.5小时。反应液减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:57%-77%,6.5分钟}纯化得到化合物1。
MS-ESI计算值[M+H] +459,实测值459。
1H NMR(400MHz,DMSO-d 6)δ=8.51(d,J=2.4Hz,1H),8.41(dd,J=9.2,2.4Hz,1H),8.01-7.98(m,1H),7.56(d,J=8.8Hz,1H),7.53-7.49(m,1H),7.48-7.44(m,1H),5.02-4.95(m,1H),4.15-3.95(m,2H),3.72-3.25(m,7H),2.19-2.04(m,4H),1.41-1.38(m,6H)。
实施例3
Figure PCTCN2021078742-appb-000064
合成路线:
Figure PCTCN2021078742-appb-000065
将化合物3a(9.28mg,103μmol)溶于无水二氯甲烷(2mL)中,向混合液中加入2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(65.3mg,172μmol),反应液在25℃下搅拌0.5小时,向混合液中加入化合物1o的盐酸盐(50.0mg,114μmol),三乙胺(34.7mg,343μmol),反应液在25℃下搅拌0.5小时。反应液浓缩,粗产物经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:60%-80%,7.5分钟}纯化得到化合物3。
MS-ESI计算值[M+H] +473,实测值473。
1H NMR(400MHz,DMSO-d 6)δ=8.53(d,J=2.2Hz,1H),8.42(dd,J=2.3,8.9Hz,1H),8.04-7.98(m,1H),7.59-7.43(m,3H),5.03-4.94(m,1H),4.13-3.97(m,2H),3.73-3.34(m,6H),3.30(s,3H),2.23-2.01(m,4H),1.42-1.37(m,6H)。
实施例4
Figure PCTCN2021078742-appb-000066
合成路线:
Figure PCTCN2021078742-appb-000067
将化合物4a(8.76mg,103μmol)溶于无水二氯甲烷(2mL)中,向混合液中加入2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(65.3mg,172μmol),反应液在25℃下搅拌0.5小时,向混合液中加入化合物1o的盐酸盐(50.0mg,114μmol),三乙胺(34.7mg,343μmol),反应液在25℃下搅拌0.5小时。反应液浓缩,粗产物经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:57%-77%,7.5分钟}纯化得到化合物4。
MS-ESI计算值[M+H] +468,实测值468。
1H NMR(400MHz,DMSO-d 6)δ=8.53(d,J=2.2Hz,1H),8.42(dd,J=2.3,9.0Hz,1H),8.06-7.97(m,1H),7.61-7.44(m,3H),5.04-4.94(m,1H),4.07–3.89(m,2H),3.74-3.42(m,4H),3.36-3.25(m,2H),2.23-2.03(m,4H),1.42-1.37(m,6H)。
实施例5
Figure PCTCN2021078742-appb-000068
合成路线:
Figure PCTCN2021078742-appb-000069
将化合物5a(13.5mg,103μmol)溶于无水二氯甲烷(2mL)中,向混合液中加入2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(65.3mg,172μmol),化合物1o的盐酸盐(50.0mg,114μmol),三乙胺(34.7mg,343μmol),反应液在25℃下搅拌1小时。反应液浓缩,粗产物经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:52%-72%,6.5分钟}纯化得到化合物5。
MS-ESI计算值[M+H] +501,实测值501。
1H NMR(400MHz,DMSO-d 6)δ=8.55-8.51(m,1H),8.45-8.40(m,1H),8.03-7.98(m,1H),7.59-7.43(m,3H),5.04-4.95(m,1H),3.79-3.25(m,6H),2.59-2.42(m,4H),2.25-2.04(m,4H),1.42-1.37(m,6H)。
实施例6
Figure PCTCN2021078742-appb-000070
合成路线:
Figure PCTCN2021078742-appb-000071
第一步
将化合物6a(18.0mg,103μmol)溶于无水二氯甲烷(2mL)中,向混合液中加入2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(65.3mg,172μmol),反应液在25℃下搅拌0.5小时,向混合液中加入化合物1o的盐酸盐(50.0mg,114μmol),三乙胺(34.7mg,343μmol)。向反应液中加入水(20mL),用二氯甲烷(10mL×3)萃取,合并有机相,有机相依次用水(10mL)和饱和食盐水(10mL)洗涤,无水硫酸钠干燥。减压浓缩,得到化合物6b,粗产物未经纯化,直接用于下一步反应。
MS-ESI计算值[M+H] +558,实测值558。
第二步
将化合物6b(81.0mg,145μmol)溶于无水甲醇(2mL)中,向混合液中加入盐酸甲醇(4M,363μL),反应液在25℃下搅拌1小时。反应液浓缩,粗品经高效液相色谱法{盐酸条件,柱型号: 3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:29%-49%,7.5分钟}纯化得到化合物6的盐酸盐。
MS-ESI计算值[M+H] +458,实测值458。
1H NMR(400MHz,DMSO-d 6)δ=8.53(d,J=2.2Hz,1H),8.42(dd,J=2.2,8.9Hz,1H),8.14(br s,3H),8.06-9.00(m,1H),7.61-7.44(m,3H),5.05-4.93(m,1H),3.92-3.25(m,8H),2.26-1.98(m,4H),1.42-1.37(m,6H)。
实施例7
Figure PCTCN2021078742-appb-000072
合成路线:
Figure PCTCN2021078742-appb-000073
将化合物7a(15.8mg,114μmol)溶于无水二氯甲烷(2mL)中,向混合液中加入2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(65.3mg,172μmol),反应液在25℃下搅拌0.5小时,向混合液中加入化合物1o的盐酸盐(50.0mg,114μmol),三乙胺(34.7mg,343μmol),反应液在25℃下搅拌0.5小时。反应液浓缩,粗产物经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:32%-52%,6.5分钟}纯化得到化合物7。
MS-ESI计算值[M+H] +521,实测值521。
1H NMR(400MHz,DMSO-d 6)δ=8.56-8.52(m,1H),8.46-8.40(m,1H),8.04-7.99(m,1H),7.61-7.44(m,3H),5.05-4.94(m,1H),4.45-4.35(m,2H),3.92-3.44(m,4H),3.34-3.28(m,2H),3.18-3.11(m,3H),2.26-1.96(m,4H),1.42-1.37(m,6H)。
实施例8
Figure PCTCN2021078742-appb-000074
合成路线:
Figure PCTCN2021078742-appb-000075
第一步
将化合物8a(68.0g,653mmol)和咪唑(200mL)溶于二氯甲烷(500mL),冷却至0℃。将叔丁基二甲基氯硅烷(103g,686mmol)溶于二氯甲烷(200mL)加入至上述反应液中。反应液在0℃和氮气保护下搅拌3小时。减压浓缩反应液,石油醚(1500mL)稀释,用水(300mL×3)洗涤,无水硫酸钠干燥,减压浓缩得到化合物8b。
1H NMR(400MHz,CDCl 3)δ=4.24(s,2H),4.20(q,J=7.2Hz,2H),1.28(t,J=7.2Hz,3H),0.93(s,9H),0.11(s,6H)。
第二步
将化合物8b(12.0g,55.0mmol)溶于乙醇(120mL),冷却至0℃。将氢氧化钾(4.62g,82.4mmol)乙醇(120mL)溶液加入到上述反应液中,反应液在25℃下搅拌12小时。减压浓缩反应液,剩余物溶于水(100mL),在0℃下慢慢滴加1M的盐酸将其pH调至4。用乙酸乙酯(50mL×4)萃取,合并有机相,有机相分别用水(30mL×1)和饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,浓缩得到化合物8c。
1H NMR(400MHz,CDCl 3)δ=4.24(s,2H),0.94(s,9H),0.15(s,6H)
第三步
将化合物8d(1.00g,4.31mmol)和2-碘丙烷(1.47g,8.62mmol)溶于甲苯(8mL),然后加入碳 酸银(3.57g,12.9mmol),反应液在50℃下搅拌16小时。反应液减压浓缩,剩余物加入水(100mL)稀释,用乙酸乙酯(100mL×3)萃取,合并的有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得化合物8e。
MS-ESI计算值[M+H] +274和276,实测值274和276。
1H NMR(400MHz,CDCl 3)δ=8.72(d,J=2.1Hz,1H),8.38(d,J=2.1Hz,1H),5.48-5.37(m,1H),3.92(s,3H),1.42(d,J=6.2Hz,6H)。
第四步
将化合物8e(1.00g,3.65mmol)溶于无水N,N-二甲基甲酰胺(15mL)中,加入氰化锌(857mg,7.30mmol),三(二亚苄基丙酮)二钯(334mg,365μmol),2-二叔丁基膦-2′,4′,6′-三异丙基联苯(348mg,730μmol),氮气保护下,反应液在90℃下搅拌12小时。反应液浓缩,剩余物加水(50mL)稀释,用乙酸乙酯(30mL×3)萃取,合并有机相用饱和食盐水(40mL×1)洗涤,无水硫酸钠干燥,浓缩,粗品经硅胶柱层析法(10:1,石油醚/乙酸乙酯,Rf=0.4)分离纯化得到化合物8f。
MS-ESI计算值[M+H- iPr] +179,实测值179。
第五步
将化合物8f(100mg,454μmol)溶于四氢呋喃(1mL)和甲醇(0.5mL)中,将一水合氢氧化锂(57.2mg,1.36mmol)的水(0.5mL)溶液滴加到反应液中,反应液在25℃下搅拌1小时。反应液减压浓缩去除有机溶剂,剩余物用1N的盐酸水溶液调节pH到6左右,然后用水(50mL)稀释,用乙酸乙酯(50mL×3)萃取,合并有机相用无水硫酸钠干燥,过滤,浓缩得到粗产品。粗产品经薄层硅胶层析法(10:1,二氯甲烷/甲醇,Rf=0.21)分离纯化得到化合物8g。
1H NMR(400MHz,CDCl 3)δ=9.18-8.74(m,1H),8.70-8.23(m,1H),5.60-5.38(m,1H),1.43(d,J=6.1Hz,6H)。
第六步
将化合物1j(8.20g,32.5mmol),化合物8c(7.43g,39.0mmol)和二异丙基乙胺(12.6g,97.6mmol)溶于N,N-二甲基甲酰胺(80mL)中然后加入2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(14.8g,39.0mmol)。反应液在25℃下搅拌12小时。减压浓缩反应液,加水(200mL)稀释,用乙酸乙酯(100mL×3)萃取,合并有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,浓缩,粗品经柱层析法(2:1,石油醚/乙酸乙酯,Rf=0.3)分离纯化得到化合物8h。
MS-ESI计算值[M+H] +310和312,实测值310和312。
第七步
将化合物8h(5.00g,16.1mmol)溶于无水N,N-二甲基甲酰胺(50mL)中,向加入氰化锌(3.79g,32.2mmol),三(二亚苄基丙酮)二钯(738mg,806μmol),2-二叔丁基膦-2′,4′,6′-三异丙基联苯(768mg,1.66mmol),用氮气置换三次,氮气保护下,反应液在90℃下搅拌12小时,反应结束后浓缩反应液。剩余物加水(200mL)稀释,用乙酸乙酯(100mL×3)萃取,合并有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,浓缩,经硅胶柱层析法(2:1,石油醚/乙酸乙酯,Rf=0.3)分离纯化得到粗产物,粗产物经过经高效液相色谱法{盐酸条件,柱型号:Phenomenex luna C18 250*50mm*10μm;流动性:[水(0.05%HCl)-乙腈];乙腈%:10%-40%,20分钟}纯化得到化合物8i。
MS-ESI计算值[M+H] +257,实测值257。
第八步
将化合物8i(700mg,2.73mmol)和二异丙基乙胺(706mg,5.46mmol)溶于乙醇(15mL),然后加入盐酸羟胺(380mg,5.46mmol),反应液在60℃下搅拌12小时。反应液冷却至室温,浓缩反应液,剩余物用乙醇(10mL)稀释,25℃下搅拌12小时,过滤,滤饼用乙醇(5mL×2)洗涤,真空干燥滤饼得到化合物8j。
MS-ESI计算值[M+H] +290,实测值290。
第九步
将化合物8g(43.9mg,213μmol)溶于N,N-二甲基甲酰胺(2mL)中,向反应液中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(44.5mg,232μmol)和1-羟基苯并三唑(31.4mg,232μmol),反应液在25℃下搅拌15分钟,然后加入化合物8j(56.0mg,194μmol),反应在25℃下搅拌1小时,随后在80℃下搅拌12小时。减压浓缩反应液,加入水(50mL)稀释,用乙酸乙酯(20mL×3)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:57%-77%,7分钟}纯化得到化合物8。
MS-ESI计算值[M+H] +460,实测值460。
1H NMR(400MHz,CDCl 3)δ=9.16(d,J=2.3Hz,1H),8.65(d,J=2.3Hz,1H),8.14-8.07(m,1H),7.42(t,J=8.0Hz,1H),7.32(d,J=8.0Hz,1H),5.62-5.51(m,1H),4.25-4.06(m,2H),3.97-3.33(m,6H),2.32-2.01(m,4H),1.48(d,J=6.0Hz,1H)。
实施例9
Figure PCTCN2021078742-appb-000076
合成路线:
Figure PCTCN2021078742-appb-000077
第一步
将化合物1a(1.00g,5.00mmol)和环戊醇(517mg,6.00mmol)在0℃下溶于N,N-二甲基甲酰胺(10mL),搅拌15分钟后向反应液中加入氢化钠(600mg,15.0mmol,60%纯度),然后反应液在25℃下搅拌12小时。反应液浓缩,剩余物用水(50mL)稀释,用乙酸乙酯(50mL×3)萃取,合并有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物9a。
MS-ESI计算值[M+H] +266和268,实测值266和268。
第二步
将化合物9a(1.30g,4.88mmol)溶于N,N-二甲基甲酰胺(3mL)和甲醇(9mL)中,向反应液中加入乙酸钾(1.44g,14.7mmol)和1,1-双(二苯基磷)二茂铁氯化钯(357mg,488μmol),然后依次用氩气和一氧化碳置换反应体系中的气体,反应液在一氧化碳(50PSI)氛围下80℃搅拌19小时。反应液减压浓缩,剩余物用水(200mL)稀释,用乙酸乙酯(200mL×2)萃取,合并有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到粗产品。粗产品经硅胶柱层析法(10:1,石油醚/乙酸乙酯,Rf=0.20)分离纯化得到化合物9b。
MS-ESI计算值[M+H] +246,实测值246。
第三步
将化合物9b(1.00g,4.08mmol)溶于四氢呋喃(10mL)和甲醇(2mL)中,一水合氢氧化锂(513mg,12.2mmol)的水(1mL)溶液滴加到反应液中,反应液在25℃下搅拌2小时。反应液减压浓缩,用水(100mL)稀释,乙酸乙酯(100mL×3)洗涤,水相用1N的盐酸水溶液调节pH小于6。用乙酸乙酯(50mL×3)萃取,合并有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物9c。
MS-ESI计算值[M+H] +232,实测值232。
1H NMR(400MHz,CDCl 3)δ=8.32(d,J=2.1Hz,1H),8.25(dd,J=9.0,2.1Hz,1H),7.04(d,J=9.0Hz,1H),5.00-4.92(m,1H),2.07-1.94(m,4H),1.92-1.83(m,2H),1.75-1.63(m,2H)。
第四步
将化合物9c(52.8mg,228μmol)溶于N,N-二甲基甲酰胺(2mL)中,向反应液中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(47.7mg,249μmol)和1-羟基苯并三唑(33.6mg,249μmol),反应液在25℃下搅拌15分钟,然后加入化合物8j(60.0mg,207μmol),反应在25℃下搅拌1小时,随后在80℃下搅拌12小时。反应结束后,反应液加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:Phenomenex luna C18 150*25mm*10μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:53%-83%,10分钟}纯化得到化合物9。
MS-ESI计算值[M+H] +485,实测值485。
1H NMR(400MHz,CDCl 3)δ=8.45-8.41(m,1H),8.37-8.32(m,1H),8.13-8.07(m,1H),7.45 7.38(m,1H),7.34-7.29(m,1H),7.18-7.11(m,1H),5.06-4.93(m,1H),4.30-4.20(m,1H),4.20-4.03(m,1H),3.96-3.52(m,4H),3.47-3.33(m,3H),2.34-1.98(m,8H),1.94-1.69(m,4H)。
实施例10
Figure PCTCN2021078742-appb-000078
第一步
将化合物10a(2.00g,8.66mmol)溶于N,N-二甲基甲酰胺(20mL),加入2-溴丙烷(1.60g,13.0mmol),和碳酸钾(2.39g,17.3mmol),反应液在80℃下搅拌12小时。反应液用水(200mL)稀释,用乙酸乙酯(200mL×2)萃取,合并有机相用无水硫酸钠干燥,过滤,浓缩。粗产品经硅胶柱层析法分离(3:1,石油醚/乙酸乙酯,Rf=0.74)得到化合物10b。
MS-ESI计算值[M+H] +273和275,实测值273和275。
第二步
将化合物10b(900mg,3.30mmol)溶于四氢呋喃(10mL)和甲醇(2mL)中,把一水合氢氧化锂(415mg,9.89mmol)水(3mL)溶液滴加到上述反应液中,反应液在25℃下搅拌12小时。浓缩反应液,用浓度为1N的盐酸溶液调节pH至6左右。然后用水(50mL)稀释,用乙酸乙酯(50mL×3)萃取,合并有机相用无水硫酸钠干燥,过滤,滤液浓缩得到化合物10c。
MS-ESI计算值[M+H] +259和261,实测值259和261。
1H NMR(400MHz,CDCl 3)δ=8.30(d,J=2.0Hz,1H),8.02(dd,J=8.8,2.0Hz,1H),6.94(d,J=8.8Hz,1H),4.76-4.64(m,1H),1.44(d,J=6.0Hz,6H)。
第三步
将化合物10c(64.5mg,249μmol)溶于N,N-二甲基甲酰胺(2mL)中,向反应液中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(55.7mg,290μmol)和1-羟基苯并三唑(39.2mg,290μmol),反应液在25℃下搅拌15分钟,然后加入化合物8j(60.0mg,207μmol),反应在25℃下搅拌1小时,随后在80℃下搅拌16小时。减压浓缩反应液,加入水(100mL)稀释,用乙酸乙酯(50mL×3)萃取,合并的有机相用水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:Phenomenex luna C18 150*25mm*10μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:60%-90%,10分钟}纯化得到化合物10。
MS-ESI计算值[M+H] +512和514,实测值512和514。
1H NMR(400MHz,CDCl 3)δ=8.43(d,J=2.1Hz,1H),8.14-8.08(m,2H),7.44-7.37(m,1H),7.32-7.28(m,1H),7.07-7.01(m,1H),4.77-4.68(m,1H),4.23-4.17(m,1H),4.14-4.08(m,1H),3.95-3.49(m,3H),3.47-3.37(m,3H),2.32-1.98(m,4H),1.49-1.44(m,6H)。
实施例11
Figure PCTCN2021078742-appb-000079
第一步
将化合物11a(0.500g,2.68mmol)溶于N,N-二甲基甲酰胺(10mL),加入2-溴丙烷(494mg,4.02mmol)和碳酸钾(741mg,5.36mmol),反应液在80℃下搅拌12小时。反应液用水(200mL)稀释,用乙酸乙酯(200mL×2)萃取,合并有机相用无水硫酸钠干燥,过滤,浓缩。粗产品经层析柱法分离(3:1,石油醚/乙酸乙酯,Rf=0.62)得到化合物11b。
MS-ESI计算值[M+H] +229,实测值229。
第二步
将化合物11b(500mg,2.19mmol)溶于四氢呋喃(5mL)和甲醇(1mL)中,把一水合氢氧化锂(275mg,6.56mmol)水(1mL)溶液滴加到上述反应液中,反应液在25℃下搅拌12小时。浓缩反应液除去有机溶剂,用1N的盐酸溶液调节pH至6左右。然后用水(50mL)稀释,用乙酸乙酯(50mL×3)萃取,合并有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物11c。
MS-ESI计算值[M+H] +215,实测值215。
1H NMR(400MHz,CDCl 3)δ=8.13(d,J=2.0Hz,1H),7.98(dd,J=8.8,2.0Hz,1H),6.97(d,J=8.8Hz,1H),4.83-4.59(m,1H),1.44(d,J=6.1Hz,6H)
第三步
将化合物11c(44.5mg,207μmol)溶于N,N-二甲基甲酰胺(2mL)中,向反应液中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(47.7mg,249μmol)和1-羟基苯并三唑(33.6mg,249μmol),反应液在 25℃下搅拌15分钟,然后加入化合物8j(60.0mg,207μmol),反应液在25℃下搅拌1小时,随后在80℃下搅拌12小时。减压浓缩反应液,加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取,合并的有机相分别用水(20mL×2)和饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:Phenomenex luna C18 150*25mm*10μm;流动相:[水(0.05%HCl)-乙腈];B%:52%-82%,10分钟}纯化得到化合物11。
MS-ESI计算值[M+H] +468,实测值468。
1H NMR(400MHz,CDCl 3)δ=8.25(d,J=2.1Hz,1H),8.13-8.04(m,2H),7.45-7.37(m,1H),7.32-7.28(m,1H),7.07(d,J=8.7Hz,1H),4.78-4.66(m,1H),4.25-4.17(m,1H),4.16-4.04(m,1H),3.98-3.50(m,3H),3.46-3.37(m,3H),2.33-2.04(m,4H),1.49-1.44(m,6H)。
实施例12
Figure PCTCN2021078742-appb-000080
合成路线:
Figure PCTCN2021078742-appb-000081
第一步
将化合物12a(100mg,555μmol)溶于无水N,N-二甲基甲酰胺(1mL)中,向混合液中加入无水碳酸钾(307mg,2.22mmol),2-碘丙烷(189mg,111μmol),反应液在60℃下搅拌18小时,向反应液中加入10mL水,用乙酸乙酯(20mL×2)萃取,合并有机相,有机相用10mL水和10mL饱和食盐水洗涤,无水硫酸钠干燥,浓缩得到化合物12b。
MS-ESI计算值[M+H- iPr] +181,实测值181。
1H NMR(400MHz,CDCl 3)δ=10.40(s,1H),8.42(d,J=2.3Hz,1H),8.13(dd,J=8.9,2.3,Hz,1H),6.96(d,J=8.9Hz,1H),4.71(p,J=6.1Hz,1H),3.83(s,3H),1.37(d,J=6.1Hz,6H)。
第二步
将化合物12b(140mg,630μmol)溶于无水二氯甲烷(4mL),向混合液中滴加(二乙氨基)三氟化 硫(609mg,3.78mmol),反应液在25℃下搅拌15小时,向反应液中加入20mL水,用二氯甲烷(10mL×2)萃取,合并有机相,有机相用10mL水和10mL饱和食盐水洗涤,无水硫酸钠干燥,浓缩,粗产品经薄层硅胶色谱法纯化(石油醚:乙酸乙酯=10:1)得到化合物12c。
MS-ESI计算值[M+H] +245,实测值245。
1H NMR(400MHz,CDCl 3)δ=8.18(d,J=2.0Hz,1H),8.03(dd,J=8.8,2.0Hz,1H),6.88(d,J=8.8Hz,1H),8.50(t,J=55.4Hz,1H),4.63(p,J=6.1Hz,1H),3.83(s,3H),1.32(d,J=6.1Hz,6H)。
第三步
将化合物12c(89.0mg,440μmol)溶于无水四氢呋喃(3mL)和无水甲醇(1.5mL)中,将一水合氢氧化锂(45.9mg,1.09mmol)的水(0.75mL)溶液加入反应液中,反应液在25℃下搅拌12小时,减压除去有机溶剂,加入1N盐酸水溶液调节pH=1,抽滤,干燥滤饼得到化合物12d。
MS-ESI计算值[M+H] +231,实测值231。
第四步
将化合物12d(47.7mg,207μmol)溶于N,N-二甲基甲酰胺(2mL)中,向反应液中1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(47.7mg,249μmol)和1-羟基苯并三唑(33.6mg,249μmol),反应液在25℃下搅拌15分钟,然后加入化合物8j(60.0mg,207μmol),反应液在25℃下搅拌1小时,随后在80℃下搅拌12小时。减压浓缩反应液,加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取,合并的有机相分别用水(20mL×2)和饱和食盐水(40mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:Phenomenex luna C18 150*25mm*10μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:50%-80%,10分钟}纯化得到化合物12。
MS-ESI计算值[M+H] +484,实测值484。
1H NMR(400MHz,CDCl 3)δ=8.44(s,1H),8.31-8.24(m,1H),8.17 8.08(m,1H),7.46-7.37(m,1H),7.33-7.28(m,1H),7.14-6.84(m,2H),4.83-4.69(m,1H),4.24-4.17(m,1H),4.16-4.05(m,1H),3.99-3.50(m,3H),3.46-3.37(m,3H),2.38-2.07(m,4H),1.49-1.39(m,6H)。
实施例13
Figure PCTCN2021078742-appb-000082
Figure PCTCN2021078742-appb-000083
第一步
将化合物13a(3.00g,12.0mmol)溶于异丙胺(10mL)中,向混合液中加入三乙胺(1.31g,12.9mmol),反应液在90℃下搅拌12小时,向反应液中加入水(30mL),用乙酸乙酯(20mL×2)萃取,合并有机相,有机相用水(20mL×1)和饱和食盐水(20mL×1)洗涤,无水硫酸钠干燥,浓缩,粗品经硅胶柱层析法分离(10:1,石油醚/乙酸乙酯,Rf=0.50)纯化得到化合物13b。
MS-ESI计算值[M+H] +273和275,实测值273和275。
1H NMR(400MHz,CDCl 3)δ=8.62(d,J=1.9Hz,1H),8.09(d,J=1.9Hz,1H),4.35-4.19(m,1H),3.79(s,3H),1.20(d,J=6.5Hz,6H)。
第二步
将化合物13b(1.53g,5.60mmol)溶于无水N,N-二甲基甲酰胺(20mL)中,向混合液中加入氰化锌(1.32g,11.2mmol),三(二亚苄基丙酮)二钯(513mg,560μmol),2-二叔丁基膦-2′,4′,6′-三异丙基联苯(534mg,1.12mmol),在氮气保护下,反应液在90℃下搅拌12小时,反应液浓缩,剩余物中加入水(100mL),用乙酸乙酯(50mL×2)萃取,合并有机相,有机相分别用水(50mL×1)和饱和食盐水(50mL×1)洗涤,无水硫酸钠干燥,浓缩,粗品经硅胶柱层析法(10:1,石油醚/乙酸乙酯,Rf=0.35)分离纯化得到化合物13c。
MS-ESI计算值[M+H] +220,实测值220。
1H NMR(400MHz,CDCl 3)δ=8.89(d,J=2.3Hz,1H),8.25(d,J=2.3Hz,1H),4.49-4.38(m,1H),3.90(s,3H),1.30(d,J=6.6Hz,6H)。
第三步
将化合物13c(100mg,456μmol)溶于无水四氢呋喃(4mL)和无水甲醇(2mL)中,将一水合氢氧化锂(55.4mg,1.32mmol)的水(2mL)溶液加入反应液中,反应液在25℃下搅拌12小时,减压浓缩除去有机溶剂,剩余物加水(10mL)稀释,用1N盐酸将其pH调至1,过滤,滤饼干燥得到化合物13d。
MS-ESI计算值[M+H] +206,实测值206。
第四步
将化合物13d(35.5mg,173μmol)溶于N,N-二甲基甲酰胺(2mL)中,向反应液中加入1-(3-二甲 氨基丙基)-3-乙基碳二亚胺盐酸盐(39.8mg,207μmol)和1-羟基苯并三唑(28.0mg,207μmol),反应液在25℃下搅拌15分钟,然后加入化合物8j(50.0mg,173μmol),反应在25℃下搅拌1小时,随后在80℃下搅拌12小时。反应液中加入水(50mL)稀释,用乙酸乙酯(20mL×3)萃取,合并的有机相分别用无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:50%-70%,7分钟}纯化得到化合物13。
MS-ESI计算值[M+H] +459,实测值459。
1H NMR(400MHz,CDCl 3)δ=9.10(d,J=2.3Hz,1H),8.42(d,J=2.3Hz,1H),8.14-8.04(m,1H),7.45-7.38(m,1H),7.34-7.28(m,1H),5.54-5.39(m,1H),4.54-4.04(m,2H),3.97-3.34(m,6H),2.33-1.99(m,4H),1.39-1.31(m,6H)。
实施例14
Figure PCTCN2021078742-appb-000084
合成路线:
Figure PCTCN2021078742-appb-000085
第一步
将化合物1j(3.00g,9.67mmol)和咪唑(856mg,12.6mmol)溶于二氯甲烷(100mL)。将叔丁基二甲基氯硅烷(856mg,12.6mmol)的二氯甲烷(20mL)溶液在0℃下加入至上述反应液中。反应液 在25℃和氮气保护下搅拌3小时。用二氯甲烷(200mL)稀释,用水(100mL×3)洗涤,无水硫酸钠干燥,减压浓缩。粗品经硅胶柱层析法(10:1,石油醚/乙酸乙酯,Rf=0.5)分离纯化得到化合物14a。MS-ESI计算值[M+H] +424和426,实测值424和426。
第二步
将化合物14a(1.50g,3.53mmol)和双联嚬哪醇硼酸酯(987mg,3.89mmol)溶于1,4-二氧六环(20mL),然后加入1,1-双(二苯基磷)二茂铁氯化钯(259mg,353μmol)和乙酸钾(1.04g,10.6mmol)。反应液在氮气保护下80℃搅拌15小时。反应液减压浓缩,用水(200mL)稀释,用乙酸乙酯(100mL×3)萃取,合并的有机相用饱和食盐水(200mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经硅胶柱层析(5:1,石油醚/乙酸乙酯,Rf=0.70)分离纯化得到化合物14b。
MS-ESI计算值[M+H] +472,实测值472。
第三步
将化合物1b(10.0g,41.7mmol),双联嚬哪醇硼酸酯(12.7g,50.0mmol)和乙酸钾(8.18g,83.3mmol)溶于无水N,N-二甲基甲酰胺(100mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(1.83g,2.50mmol),反应液在120℃下搅拌3小时。反应液减压浓缩,剩余物用水(500mL)稀释,用乙酸乙酯(300mL×2)萃取,合并的有机相用饱和食盐水(300mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品经硅胶柱层析分离(5:1,石油醚/乙酸乙酯,Rf=0.49)纯化得到化合物14c。
MS-ESI计算值[M+H] +288,实测值288。
第四步
将化合物14c(1.00g,3.48mmol),化合物14d(685mg,4.18mmol)和碳酸钠(738mg,6.96mmol)溶于乙二醇二甲醚(10mL)和水(10mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(255mg,348μmol),反应液在100℃下搅拌12小时。反应液用水(100mL)稀释,用乙酸乙酯(50mL×2)萃取,合并的有机相用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品经硅胶柱层析分离(5:1,石油醚/乙酸乙酯,Rf=0.53),纯化得到化合物14e。
MS-ESI计算值[M+H] +245,实测值245。
第五步
将化合物14e(480mg,1.96mmol)溶于无水N,N-二甲基甲酰胺(5mL)中,在0℃下向反应液中加入N-溴代丁二酰亚胺(699mg,3.93mmol),反应液在20℃下搅拌3小时。反应液用水(30mL)稀释,用乙酸乙酯(30mL×2)萃取,合并的有机相用饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品经硅胶柱层析分离(5:1,石油醚/乙酸乙酯,Rf=0.64)纯化得到化合物14f。
MS-ESI计算值[M+H] +323和325,实测值323和325。
第六步
将化合物14f(50.0mg,155μmol),化合物14b(72.9mg,155μmol)和磷酸钾(65.7mg,309μmol)溶于无水二氧六环(1.5mL)和水(0.5mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(11.3mg,15.5μmol),反应液在80℃下搅拌12小时。反应液减压浓缩,剩余物用水(15mL) 稀释,用乙酸乙酯(15mL×2)萃取,合并的有机相用饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品化合物14g。
MS-ESI计算值[M+H] +588,实测值588。
第七步
将化合物14g(69.0mg,117μmol)溶于乙酸乙酯(1mL)中,向混合液中加入盐酸/乙酸乙酯(4M,1mL),反应液在20℃下搅拌1小时。反应液减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:52%-72%,7分钟}纯化得到化合物14。
MS-ESI计算值[M+H] +474,实测值474。
1H NMR(400MHz,CDCl 3)δ=8.26-8.09(m,2H),8.05-7.85(m,1H),7.54-7.40(m,1H),7.39-7.29(m,1H),7.25-6.98(m,2H),4.82-4.69(m,1H),4.30-4.07(m,2H),3.93-3.08(m,6H),2.26-2.07(m,4H),1.56-1.37(m,6H)。
实施例15
Figure PCTCN2021078742-appb-000086
合成路线:
Figure PCTCN2021078742-appb-000087
第一步
将化合物1d(1.00g,4.87mmol)和化合物15a(666mg,7.31mmol)缓慢溶于三氯氧磷(5mL)中,反应液在90℃下搅拌3小时。反应液用5M NaOH水溶液缓慢淬灭,调节pH=10,反应液在25℃下搅拌30分钟,反应液变浑浊,过滤,滤饼用二氯甲烷(100mL)和甲醇(10mL)溶解,有机相用水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品化合物15b。
MS-ESI计算值[M+H] +261,实测值261。
第二步
将溴化铜(601mg,2.69mmol)和叔丁基亚硝酸盐(277mg,2.69mmol)溶于乙腈(10mL)中,反应液在25℃下搅拌30分钟。向反应液中缓慢加入化合物15b(350mg,1.34mmol),反应液在25℃下搅拌1小时,70℃下搅拌2小时。反应液过滤,滤饼用乙酸乙酯(20mL)洗涤,滤液用1M盐酸水溶液(30mL)洗涤,减压浓缩,剩余物用水(20mL)稀释,二氯甲烷(30mL×2)萃取,合并有机相用水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品经硅胶柱层析分离(3:1,石油醚/乙酸乙酯,Rf=0.53)纯化得到化合物15c。
MS-ESI计算值[M+H] +324和326,实测值324和326。
第三步
将化合物15c(50.0mg,154μmol),化合物14b(72.7mg,154μmol)和磷酸钾(65.5mg,308μmol)溶于无水二氧六环(1.5mL)和水(0.5mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(11.3mg,15.4μmol),反应液在80℃下搅拌12小时。反应液减压浓缩,粗品用水(15mL)稀释,用乙酸乙酯(15mL×2)萃取,合并的有机相用饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品化合物15d。
MS-ESI计算值[M+H] +589,实测值589。
第四步
将化合物15d(86.0mg,146μmol)溶于乙酸乙酯(1mL)中,向混合液中加入盐酸/乙酸乙酯(4M,1mL),反应液在20℃下搅拌1小时。反应液减压浓缩粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:45%-65%,8分钟}纯化得到化合物15。
MS-ESI计算值[M+H] +475,实测值475。
1H NMR(400MHz,CDCl 3)δ=8.24(d,J=8.0Hz,1H),8.17(s,1H),7.81(d,J=7.2Hz,1H),7.42-7.36(m,1H),7.33-7.28(m,1H),7.11(d,J=8.4Hz,1H),4.82-4.73(m,1H),4.25-4.06(m,2H),3.96-3.38(m,6H),2.25-2.06(m,4H),1.49-1.45(m,6H)。
实施例16
Figure PCTCN2021078742-appb-000088
合成路线:
Figure PCTCN2021078742-appb-000089
第一步
将化合物14b(150mg,318μmol)和化合物16a(63.5mg,318μmol)溶于1,4-二氧六环(3mL),然后加入1,1-双(二苯基磷)二茂铁氯化钯(23.3mg,31.8μmol),磷酸钾(135mg,636μmol)和水(0.6mL)。反应液在氮气保护下100℃搅拌12小时。反应液减压浓缩,用水(80mL)稀释,用乙酸乙酯(50mL×3)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层硅胶层析法(1:1,石油醚/乙酸乙酯,Rf=0.50)分离纯化得到化合物16b。
MS-ESI计算值[M+H] +508和510,实测值508和510。
第二步
将化合物16b(96.0mg,189μmol)和化合物14c(65.1mg,227μmol)溶于1,4-二氧六环(1mL),然后加入1,1-双(二苯基磷)二茂铁氯化钯(13.8mg,18.9μmol),磷酸钾(160mg,755μmol)和水(0.2mL)。反应液在氮气保护下80℃搅拌12小时。反应液减压浓缩,用水(80mL)稀释,用乙酸乙酯(40mL×4)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品化合物16c。
MS-ESI计算值[M+H] +589,实测值589。
第三步
将化合物16c(123mg,209μmol)溶于盐酸/甲醇(4M,3mL),反应液在25℃下搅拌1小时。反应液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:60%-80%,7分钟}纯化得到化合物16。
MS-ESI计算值[M+H] +475,实测值475。
1H NMR(400MHz,CDCl 3)δ=8.62(d,J=2.1Hz,1H),8.53(dd,J=8.8,2.1Hz,1H),8.05(d,J=7.6Hz,1H),7.44(t,J=7.6Hz,1H),7.34(d,J=8.0Hz,1H),7.09(d,J=9.0Hz,1H),4.84-4.71(m,1H),4.25-4.05(m,2H),3.98-3.50(m,3H),3.49-3.33(m,3H),2.39-2.05(m,4H),1.47(d,J=6.0Hz,6H)。
实施例17
Figure PCTCN2021078742-appb-000090
合成路线:
Figure PCTCN2021078742-appb-000091
第一步
将化合物10a(1.00g,4.33mmol)溶于无水N,N-二甲基甲酰胺(15mL)中,向混合液中加入氰化锌(1.02g,8.66mmol),三(二亚苄基丙酮)二钯(396mg,433μmol),2-二叔丁基膦-2′,4′,6′-三异丙基联苯(412mg,866μmol),在氮气保护下,反应液在90℃下搅拌12小时,反应液浓缩除去N,N-二甲基甲酰胺溶剂,粗品经硅胶柱层析法分离(2:1,石油醚/乙酸乙酯,Rf=0.24)纯化得到化合物17a。
1H NMR(400MHz,CDCl 3)δ=8.16(d,J=2.0Hz,1H),8.08(dd,J=2.0,8.7Hz,1H),6.97(d,J=8.7Hz,1H),3.85(s,3H)。
第二步
将化合物17a(523mg,2.80mmol)溶于N,N-二甲基甲酰胺(15mL)和水(1.5mL)中,向混合液中加入碳酸钾(969mg,7.01mmol),二氟氯乙酸钠(2.21g,11.2mmol),反应液在100℃下搅拌2小时,反应液冷却到25℃,向混合液中加入1.6mL浓盐酸和3.2mL水,反应液在25℃下搅拌12小时,向反应液中加入30mL水,用乙酸乙酯(20mL×2)萃取,合并有机相,有机相用20mL水和20mL饱和食盐水洗涤,无水硫酸钠干燥,浓缩得到化合物17b。
第三步
将化合物17b(100mg,440μmol)溶于无水四氢呋喃(4mL)和无水甲醇(2mL)中,将一水合氢氧化锂(55.4mg,1.32mmol)的水(2mL)溶液加入混合液中,反应液在25℃下搅拌12小时,减压除去有机溶剂,加入1N盐酸水溶液调节pH=1,混合液变浑浊,抽滤,真空干燥滤渣得到化合物17c。
1H NMR(400MHz,CDCl 3)δ=8.35(d,J=2.1Hz,1H),8.26(dd,J=2.1,8.7Hz,1H),7.38(d,J=8.8Hz,1H),6.76(t,J=70.4Hz,1H)。
第四步
将化合物17c(44.2mg,207μmol)溶于N,N-二甲基甲酰胺(2mL)中,向反应液中加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(47.7mg,249μmol)和1-羟基苯并三唑(33.6mg,249μmol),反应液在25℃下搅拌15分钟,然后加入化合物8j(60.0mg,207μmol),反应在25℃下搅拌1小时,随后在80℃下搅拌12小时。反应液中加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取,合并的有机相分别用无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法(盐酸条件,柱型号:Phenomenex luna C18 150*2 5mm*10μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:44%-74%,10分钟)纯化得到化合物17。
MS-ESI计算值[M+H] +467,实测值467。
1H NMR(400MHz,CDCl 3)δ=8.60-8.54(m,1H),8.48-8.43(m,1H),8.15-8.07(m,1H),7.56(d,J=8.8Hz,1H),7.43(t,J=7.6Hz,1H),7.33(d,J=7.6Hz,1H),6.78(t,J=70.8Hz,1H),4.33-4.08(m,2H),3.99-3.51(m,4H),3.48-3.39(m,3H),2.31-2.04(m,4H)。
实施例18
Figure PCTCN2021078742-appb-000092
合成路线:
Figure PCTCN2021078742-appb-000093
第一步
将化合物14c(200mg,696μmol),化合物18a(198mg,696μmol)和磷酸钾(296mg,1.39mmol)溶于无水二氧六环(4mL)和水(1mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯 化钯(51.0mg,70μmol),反应液在80℃下搅拌12小时。反应液减压浓缩,粗品用水(30mL)稀释,用乙酸乙酯(30mL×2)萃取,合并的有机相用饱和食盐水(30mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层硅胶色谱法分离(5:1,石油醚/乙酸乙酯,Rf=0.31),得到化合物18b。MS-ESI计算值[M+H] +318和320,实测值318和320。
第二步
将化合物18b(50.0mg,157μmol),化合物14b(74.1mg,157μmol)和磷酸钾(66.7mg,314μmol)溶于无水二氧六环(1.5mL)和水(0.5mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(11.5mg,15.7μmol),反应液在80℃下搅拌12小时。反应液减压浓缩,粗品用水(10mL)稀释,用乙酸乙酯(10mL×2)萃取,合并的有机相用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品化合物18c。
MS-ESI计算值[M+H] +583,实测值583。
第三步
将化合物18c(78.0mg,134μmol)溶于乙酸乙酯(1mL)中,向混合液中加入盐酸/乙酸乙酯(4M,1mL),反应液在20℃下搅拌1小时。反应液减压浓缩粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:51%-71%,7分钟}纯化得到化合物18。
MS-ESI计算值[M+H] +469,实测值469。
1H NMR(400MHz,CDCl 3)δ=8.88(s,2H),8.76(br s,1H),8.68(d,J=8.9Hz,1H),7.44-7.38(m,1H),7.36-7.32(m,1H),7.26-7.22(m,1H),7.10(d,J=8.9Hz,1H),4.82-4.75(m,1H),4.27-4.08(m,2H),3.99-3.42(m,4H),3.14-3.03(m,2H),2.24-2.09(m,4H),1.49-1.46(m,6H)。
实施例19
Figure PCTCN2021078742-appb-000094
合成路线:
Figure PCTCN2021078742-appb-000095
第一步
将化合物14c(200mg,696μmol),化合物19a(198mg,696μmol)和磷酸钾(296mg,1.39mmol)溶于无水二氧六环(4mL)和水(1mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(51.0mg,69.7μmol),反应液在60℃下搅拌12小时。反应液减压浓缩,粗品用水(30mL)稀释,用乙酸乙酯(30mL×2)萃取,合并的有机相用饱和食盐水(30mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层硅胶色谱法分离(5:1,石油醚/乙酸乙酯,Rf=0.09),得到化合物19b。MS-ESI计算值[M+H] +318和320,实测值318和320。
第二步
将化合物19b(61.0mg,192μmol),化合物14b(90.4mg,192μmol)和磷酸钾(81.4mg,383μmol)溶于无水二氧六环(1.5mL)和水(0.5mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(14.0mg,19.2μmol),反应液在80℃下搅拌12小时。反应液减压浓缩,粗品用水(15mL)稀释,用乙酸乙酯(10mL×2)萃取,合并的有机相用饱和食盐水(10mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品化合物19c。
MS-ESI计算值[M+H] +583,实测值583。
第三步
将化合物19c(90.0mg,154μmol)溶于乙酸乙酯(1mL)中,向混合液中加入盐酸/乙酸乙酯(4M,1mL),反应液在20℃下搅拌1小时。反应液减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*3 0mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:51%-71%,7分钟}纯化得到化合物19。
MS-ESI计算值[M+H] +469,实测值469。
1H NMR(400MHz,CDCl 3)δ=9.13(br s,1H),8.99(br s,1H),8.39-8.30(m,2H),7.70(d,J=7.2Hz,1H),7.45(t,J=7.4Hz,1H),7.31(d,J=7.6Hz,1H),7.16(d,J=8.4Hz,1H),4.83-4.75(m,1H),4.23-4.10(m,2H),3.97-3.18(m,6H),2.36-2.04(m,4H),1.51-1.45(m,6H)。
实施例20
Figure PCTCN2021078742-appb-000096
合成路线:
Figure PCTCN2021078742-appb-000097
第一步
将化合物14c(300mg,1.04mmol),化合物20a(208mg,1.04mmol)和磷酸钾(554mg,2.61mmol)溶于乙二醇二甲醚(4mL)和水(1mL)中,在氮气保护下向混合液中加入四三苯基膦钯(121mg,104μmol),反应液在微波120℃下搅拌1小时,向反应液中加入30mL水,用乙酸乙酯(30mL×2)萃取,合并有机相,有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,浓缩,粗品经硅胶柱层析法分离(5:1,石油醚/乙酸乙酯,Rf=0.30)纯化得到化合物20b。
MS-ESI计算值[M+H] +324和326,实测值324和326。
第二步
将化合物20b(50.0mg,154μmol),化合物14b(72.7mg,154μmol),磷酸钾(65.5mg,308μmol)和1,1-双(二苯基磷)二茂铁氯化钯(11.3mg,154μmol)溶于二氧六环(1.5mL)和水(0.5mL)中,在氮气保护下,反应液在80℃下搅拌12小时,反应液浓缩,向剩余物加入20mL水,用乙酸乙酯(30mL×2)萃取,合并有机相,有机相用饱和食盐水(30mL)洗涤,有机相浓缩得到化合物20c。
MS-ESI计算值[M+H] +589,实测值589。
第三步
将化合物20c(83.0mg,141μmol)溶于乙酸乙酯(2mL)中,向混合液中加入盐酸/乙酸乙酯(4M,353μL),反应液在25℃下搅拌2小时。向反应液中加入水(10mL)稀释,用乙酸乙酯(10mL×2)萃取,合并有机相依次用水(10mL)和饱和食盐水(10mL)洗涤,粗品经高效液相色谱法{盐酸条件, 柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:58%-78%,7分钟}纯化得到化合物20。
MS-ESI计算值[M+H] +475,实测值475。
1H NMR(400MHz,DMSO-d 6)δ=8.52(d,J=2.2Hz,1H),8.38(dd,J=8.8,2.2Hz,1H),8.20(d,J=7.2Hz,1H),7.54-7.41(m,3H),5.02-4.91(m,1H),4.61-4.52(m,1H),4.12-3.94(m,2H),3.73-3.38(m,6H),2.19-1.97(m,4H),1.42-1.37(m,6H)。
实施例21
Figure PCTCN2021078742-appb-000098
合成路线:
Figure PCTCN2021078742-appb-000099
第一步
将化合物1d(100g,487mmol)溶于二氯甲烷(500mL),慢慢加入氯化亚砜(116g,975mmol,70.7mL),然后加入N,N-二甲基甲酰胺(35.6mg,487μmol)。反应液在25℃下搅拌16小时。反应液减压浓缩,粗品加入到正庚烷/乙酸乙酯的混合溶液(1:10,220mL)中,25℃下搅拌3小时。过滤,滤饼用正庚烷洗涤(50mL×2),减压干燥得到化合物21a。
第二步
将化合物21a(2.00g,8.94mmol),三乙胺(2.71g,26.8mmol)和2-氨基乙醇(1.09g,17.88mmol)溶于二氯甲烷(30mL),置换氮气三次,然后反应液在氮气保护下25℃下搅拌12小时。反应液减压浓缩,剩余物加水(200mL)稀释,用乙酸乙酯(200mL×2)萃取,合并有机相用1N的盐酸水溶液(50mL×2)洗涤。无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物21b。
MS-ESI计算值[M+H] +249,实测值249。
第三步
将化合物21b(2.00g,8.06mmol)溶于二氯甲烷(60mL),向溶液中逐滴加入二氯亚砜(2.88g,24.2mmol),反应液在氮气保护下25℃下搅拌12小时。反应液减压浓缩,剩余物加水(50mL)稀释,用二氯甲烷(50mL×3)萃取,合并有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物21c。
MS-ESI计算值[M+H] +231,实测值231。
第四步
将化合物21c(1.20g,5.21mmol),N-溴代丁二酰亚胺(1.86g,10.4mmol)和偶氮二异丁睛(42.8mg,261μmol)溶于四氯化碳(30mL),置换氮气三次,反应液在氮气保护下80℃下搅拌16小时。反应液减压浓缩,剩余物加水(100mL)稀释,用二氯甲烷(100mL×3)萃取,合并有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗产品。粗产品经硅胶柱层析法分离(10:1,石油醚/乙酸乙酯,Rf=0.14)得到化合物21d。
MS-ESI计算值[M+H] +307和309,实测值307和309。
1H NMR(400MHz,CDCl 3)δ=8.18(d,J=2.0Hz,1H),8.13(dd,J=8.8,2.0Hz,1H),7.09(s,1H),7.04(d,J=8.8Hz,1H),4.74(p,J=6.1,1H),1.45(d,J=6.1Hz,6H)。
第五步
将化合物21d(50.0mg,162μmol),化合物14b(76.8mg,163μmol),碳酸钾(67.5mg,488μmol)和四(三苯基膦)钯(18.8mg,16.3μmol)准确称量于微波管中,然后向微波管中加入水(0.5mL)和乙二醇二甲醚(1.5mL)。反应液在微波加热100℃下搅拌40分钟。反应液减压浓缩,剩余物加水(50mL)稀释,用二氯甲烷(50mL×3)萃取,合并有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物21e。
MS-ESI计算值[M+H] +572,实测值572。
第六步
将化合物21e(50.0mg,87.5mmol)溶于乙酸乙酯(2mL)和盐酸/乙酸乙酯(4M,2mL),置换氮气三次,反应液在氮气保护下25℃下搅拌1小时。反应液减压浓缩,剩余物加水(50mL)稀释,用二氯甲烷(50mL×3)萃取,合并有机相用饱和食盐水(50mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗产品。粗产品再经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C1875*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:48%-68%,7分钟}纯化得到化合物21。MS-ESI计算值[M+H] +458,实测值458。
1H NMR(400MHz,DMSO-d 6)δ=8.41-8.36(m,1H),8.33-8.27(m,1H),7.84-7.79(m,1H),7.66(d,J=2.4Hz,1H),7.48(d,J=9.0Hz,1H),7.41-7.34(m,1H),7.33-7.27(m,1H),4.96-4.87(m,1H),4.12-3.94(m,2H),3.72-3.49(m,5H),3.21-3.13(m,2H),2.20-1.91(m,4H),1.38(d,J=6.4Hz,6H)。
实施例22
Figure PCTCN2021078742-appb-000100
合成路线:
Figure PCTCN2021078742-appb-000101
第一步
将化合物22a(200mg,1.39mol)溶于二氯甲烷(2mL)中,向反应液中加入戴斯-马丁氧化剂(1.30g,3.07mmol),反应液在25℃下搅拌1小时。向反应液中加饱和碳酸氢钠水溶液(50mL),用二氯甲烷(20mL×4)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法分离(10/1,石油醚/乙酸乙酯)纯化得到化合物22b。
第二步
将化合物1o(100mg,229μmol)和化合物22b(97.6mg,687μmol)溶于二氯甲烷(20mL)中,向反应液中加入醋酸(27.5mg,458μmol),随后加入三乙酰氧基硼氢化钠(97.0mg,457μmol),反应液在25℃下搅拌12小时。反应液减压浓缩,加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过薄层硅胶层析法分离(15/1,二氯甲烷/甲醇)纯化得到化合物22c。
MS-ESI计算值[M+H] +527,实测值527。
第三步
将化合物22c(110mg,209μmol)溶于四氢呋喃(4mL)和甲醇(2mL)的混合溶剂中,将一水合氢氧化锂(26.3mg,627μmol)的水(1mL)溶液加入到上述反应液中,反应液在25℃下搅拌12小时。减压浓缩,剩余物加入水(15mL)稀释,用1M盐酸水溶液将pH值调至5,用乙酸乙酯(10mL ×4)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:33%-53%,6.5分钟}纯化得到化合物22的盐酸盐。
MS-ESI计算值[M+H] +499,实测值499。
1H NMR(400MHz,DMSO-d 6)δ=8.52(d,J=2.2Hz,1H),8.45-8.37(m,1H),8.06-8.00(m,1H),7.76-7.70(m,1H),7.60-7.49(m,2H),5.06-4.85(m,1H),3.88-3.46(m,4H),3.29-3.20(m,2H),2.57-2.52(m,4H),2.27-2.18(m,2H),1.41-1.36(m,6H),1.35-1.28(m,2H),1.25-1.19(m,2H)。
第四步
将化合物22的盐酸盐手性分离。色谱柱:CHIRALPAK IG 50×4.6mm×3μm;流动相A:CO 2,流动相B:乙醇(0.05%二乙胺);梯度B%:40%-40%,9min。得到化合物22A(ee%=99.62%,SFC保留时间:6.567分钟)和化合物22B(ee%=99.4%,SFC保留时间:5.084分钟)。
化合物22A:MS-ESI计算值[M+H] +499,实测值499。
1H NMR(400MHz,CD 3OD)δ=8.47-8.41(m,2H),8.11(d,J=7.6Hz,1H),7.60(d,J=7.6Hz,1H),7.52-7.43(m,2H),5.00-4.92(m,2H),3.76-3.57(m,3H),3.45-3.36(m,4H),2.50–2.41(m,1H),2.40-2.32(m,3H),1.48(d,J=6.0Hz,6H),1.32-1.29(m,2H),0.88-0.84(m,2H)。
化合物22B:MS-ESI计算值[M+H] +499,实测值499。
1H NMR(400MHz,CD 3OD)δ=8.39-8.33(m,2H),8.04(dd,J=0.8,7.6Hz,1H),7.55(d,J=6.8Hz,1H),7.47-7.37(m,2H),4.96-4.85(m,2H),3.74-3.52(m,3H),3.39-3.33(m,3H),3.32-3.31(m,1H),3.32-3.30(m,1H),2.47-2.37(m,1H),2.36-2.28(m,3H),1.44(d,J=6.0Hz,6H),1.26-1.21(m,2H),0.81-0.74(m,2H)。
实施例23
Figure PCTCN2021078742-appb-000102
合成路线:
Figure PCTCN2021078742-appb-000103
第一步
将化合物1o(100mg,229μmol)和化合物23a(99.9mg,458μmol)溶于二氯甲烷(8mL)中,向反应液中加入醋酸(27.5mg,458μmol),反应液在25℃下搅拌12小时后加入三乙酰氧基硼氢化钠(97.0mg,458μmol),反应液在25℃下搅拌2小时。反应液减压浓缩,加入水(50mL)稀释,用乙酸乙酯(30mL×3)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得粗产物化合物23b。MS-ESI计算值[M+H] +603,实测值603。
第二步
将化合物23b(120mg,199μmol)溶于四氢呋喃(2mL)和乙醇(1mL)的混合溶剂中,将一水合氢氧化锂(25.1mg,597μmol)的水(1mL)溶液加入到上述反应液中,反应液在15℃下搅拌48小时。减压浓缩,剩余物加入0.5M盐酸水溶液(30mL)稀释,15℃下搅拌10分钟。用乙酸乙酯(20mL×3)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:35%-55%,7分钟}纯化得到化合物23的盐酸盐。
MS-ESI计算值[M+H] +513,实测值513。
1H NMR(400MHz,CDCl 3)δ=8.38-8.26(m,2H),8.03(d,J=7.4Hz,1H),7.77(br s,1H),7.41(t,J=6.8Hz,1H),7.13(d,J=9.0Hz,1H),4.87-4.75(m,1H),4.09-3.09(m,8H),2.80-1.95(m,10H),1.49(d,J=6.0Hz,6H)。
实施例24
Figure PCTCN2021078742-appb-000104
Figure PCTCN2021078742-appb-000105
第一步
将化合物1j(4.0g,15.9mmol)和化合物22b(2.93g,20.6mmol)溶于二氯甲烷(100mL)中,向反应液中加入醋酸(953mg,15.9mmol),反应液在15℃下搅拌13小时后加入三乙酰氧基硼氢化钠(6.72g,31.7mmol),反应液在15℃下搅拌1小时。反应液减压浓缩,加入水(200mL)稀释,用乙酸乙酯(100mL×3)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经硅胶柱层析法(1:1,石油醚/乙酸乙酯)分离纯化得到化合物24a。
MS-ESI计算值[M+H] +378和380,实测值378和380。
第二步
将化合物24a(2.35g,6.21mmol),双联嚬哪醇硼酸酯(2.37g,9.32mmol)和乙酸钾(1.22g,12.42mmol),1,1-双(二苯基磷)二茂铁氯化钯(454mg,621μmol)溶于二氧六环(20mL),在氮气保护下,反应液在80℃下搅拌12小时,减压浓缩,向剩余物中加入50mL水,用乙酸乙酯(50mL*3)萃取,合并有机相,有机相用(30mL*2)饱和食盐水洗涤,无水硫酸钠干燥,粗品经柱层析法分离(5:1,石油醚/乙酸乙酯)纯化得到化合物24b。
MS-ESI计算值[M+H] +426,实测值426。
第三步
将化合物20b(195mg,601μmol),化合物24b(256mg,601μmol),磷酸钾(255mg,1.20mmol)和1,1-双(二苯基磷)二茂铁氯化钯(44.0mg,60.1μmol)溶于二氧六环(6mL)和水(3mL)中,在氮气保护下,反应液在80℃下搅拌12小时,反应液减压浓缩,向剩余物中加入20mL水,用乙酸乙酯(50mL*2)萃取,合并有机相,有机相用30mL水和30mL饱和食盐水洗涤,无水硫酸钠干燥,浓缩,粗品经薄层色谱法纯化(1:1,石油醚/乙酸乙酯)得到化合物24c。
MS-ESI计算值[M+H] +543,实测值543。
第四步
将化合物24c(140mg,258μmol)溶于四氢呋喃(4mL)和甲醇(2mL)中,向混合液中加入一水合氢氧化锂(43.3mg,1.03mmol)水(1mL)溶液,反应液在20℃下搅拌12小时。向反应液中加入1M盐酸水溶液,调节pH值约为5。减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号: 3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:38%-58%,7分钟}纯化得到化合物24的盐酸盐。
MS-ESI计算值[M+H] +515,实测值515。
1H NMR(400MHz,MeOH-d 4)δ=8.39-8.21(m,3H),7.56(d,J=7.5Hz,1H),7.50-7.41(m,1H),7.41-7.33(m,1H),4.98-4.89(m,1H),4.09-3.77(m,2H),3.74-3.43(m,6H),2.61-2.22(m,4H),1.57-1.48(m,2H),1.47-1.43(m,6H),1.22(br s,2H)。
实施例25
Figure PCTCN2021078742-appb-000106
合成路线:
Figure PCTCN2021078742-appb-000107
第一步
将化合物18b(66.9mg,157μmol),化合物24b(50mg,157μmol)和磷酸钾(66.7mg,314μmol)溶于无水二氧六环(3mL)和水(1mL)中,氮气环境下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(11.5mg,15.7μmol),反应液在80℃下搅拌12小时。反应液用水(15mL)稀释,用乙酸乙酯(15mL×2)萃取,合并的有机相用饱和氯化钠(20mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物25a。
MS-ESI计算值[M+H] +537,实测值537。
第二步
将化合物25a(75mg,140μmol)溶于无水四氢呋喃(3mL),甲醇(1mL)和水(1mL)中,向混合液中加入一水合氢氧化锂(11.7mg,280μmol),反应液在50℃下搅拌3小时。反应液减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相: [水(0.05%HCl)-乙腈];乙腈%:34%-54%,7分钟}纯化得到化合物25的盐酸盐。
MS-ESI计算值[M+H] +509,实测值509。
1H NMR(400MHz,MeOH-d 4)δ=8.96-8.94(m,2H),8.73-8.69(m,2H),7.55-7.47(m,2H),7.45-7.42(m,1H),7.34(d,J=8.7Hz,1H),4.92-4.90(m,1H),4.04-3.91(m,2H),3.71-3.59(m,2H),3.57-3.44(m,2H),3.17-3.07(m,2H),2.42-2.35(m,2H),2.34-2.20(m,2H),1.55-1.49(m,2H),1.45(d,J=6.0Hz,6H),1.24-1.19(m,2H)。
实施例26
Figure PCTCN2021078742-appb-000108
合成路线:
Figure PCTCN2021078742-appb-000109
第一步
将化合物24b(184mg,433μmol),化合物14f(140mg,433μmol)和磷酸钾(184mg,866μmol)溶于无水二氧六环(3mL)和水(1mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(31.7mg,43.3μmol),反应液在80℃下搅拌12小时。反应液用水(20mL)稀释,用乙酸乙酯(15mL×2)萃取,合并的有机相用饱和食盐水(20mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经硅胶柱层析分离(10:1,二氯甲烷/甲醇)纯化化合物26a。
MS-ESI计算值[M+H] +542,实测值542。
第二步
将化合物26a(160mg,295μmol)溶于无水四氢呋喃(3mL),甲醇(1mL)和水(1mL)中,向混合液中加入一水合氢氧化锂(24.8mg,591μmol),反应液在50℃下搅拌3小时。反应液减压浓缩,粗 品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:34%-54%,7分钟}纯化得到化合物26的盐酸盐。
MS-ESI计算值[M+H] +514,实测值514。
1H NMR(400MHz,MeOH-d 4)δ=8.24(d,J=2.3Hz,1H),8.21(dd,J=8.9,2.4Hz,1H),8.10(s,1H),7.59-7.55(m,1H),7.52-7.47(m,1H),7.45-7.40(m,1H),7.36(d,J=8.9Hz,1H),4.93-4.90(m,1H),4.03-3.89(m,2H),3.70-3.60(m,2H),3.59-3.44(m,2H),3.25-3.20(m,2H),2.56-2.37(m,2H),2.35-2.23(m,2H),1.54-1.50(m,2H),1.44(d,J=6.1Hz,6H),1.26-1.22(m,2H)。
实施例27
Figure PCTCN2021078742-appb-000110
合成路线:
Figure PCTCN2021078742-appb-000111
第一步
将化合物24b(138mg,326μmol),化合物21d(100mg,326μmol)和磷酸钾(138mg,651μmol)溶于无水二氧六环(3mL)和水(1mL)中,氮气保护下,向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(23.8mg,43.3μmol),反应液在80℃下搅拌12小时。反应液用水(20mL)稀释,用乙酸乙酯(15mL×2)萃取,合并的有机相用饱和食盐水(20mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经硅胶柱层析分离(1:1,石油醚/乙酸乙酯)纯化化合物27a。
MS-ESI计算值[M+H] +526,实测值526。
第二步
将化合物27a(150mg,285μmol)溶于无水四氢呋喃(3mL),甲醇(1mL)和水(1mL)中,向混合液中加入一水合氢氧化锂(24.0mg,570μmol),反应液在50℃下搅拌3小时。反应液减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:31%-51%,7分钟}纯化得到化合物27的盐酸盐。
MS-ESI计算值[M+H] +498,实测值498。
1H NMR(400MHz,MeOH-d 4)δ=8.30-8.24(m,2H),7.80-7.75(m,1H),7.51-7.49(m,1H),7.47-7.41(m,2H),7.36(d,J=8.9Hz,1H),4.92-4.89(m,1H),4.02-3.88(m,2H),3.70-3.60(m,2H),3.58-3.43(m,2H),3.27-3.20(m,2H),2.56-2.38(m,2H),2.37-2.26(m,2H),1.54-1.50(m,2H),1.44(d,J=6.0Hz,6H),1.27-1.21(m,2H)。
实施例28
Figure PCTCN2021078742-appb-000112
合成路线:
Figure PCTCN2021078742-appb-000113
第一步
将化合物1d(1.00g,4.87mmol)溶于三氯氧磷(6mL)中,向混合液中加入氨基硫脲单盐酸盐(666mg,7.31mmol),反应液在90℃下搅拌8小时。将反应液缓慢滴入到6M NaOH(40mL)水溶液中,用乙酸乙酯(30mL×2)萃取,合并有机相,有机相用水(30mL)和饱和食盐水(30mL)洗涤,无水硫酸钠干燥,浓缩得到化合物28a。
MS-ESI计算值[M+H] +261,实测值261。
第二步
将化合物28a(210mg,807mmol)溶于乙腈(5mL)中,在0℃条件下,向混合液中加入亚硝酸叔丁酯(166mg,1.61mmol)和溴化铜(360mg,1.61mmol),反应液在20℃下搅拌1小时,反应液在70℃下搅拌2小时。向反应液中加入1M盐酸水溶液(10mL),用乙酸乙酯(30mL×2)萃取,合并有机相,有机相用20mL水和20mL饱和食盐水洗涤,无水硫酸钠干燥,粗品经硅胶薄层色谱法分离(3/1,石油醚/乙酸乙酯)纯化得到化合物28b。
MS-ESI计算值[M+H] +324和326,实测值324和326。
第三步
将化合物24b(87.9mg,207μmol),化合物28b(67.0mg,207μmol),磷酸钾(87.7mg,413μmol)和1,1-双(二苯基磷)二茂铁氯化钯(15.1mg,20.7μmol)溶于二氧六环(3mL)和水(1.5mL)中,在氮气保护下,反应液在80℃下搅拌12小时,反应液减压浓缩,向粗品中加入20mL水,用乙酸乙酯(50mL*2)萃取,合并有机相,有机相用30mL水和30mL饱和食盐水洗涤,无水硫酸钠干燥,浓缩得到化合物28c。
MS-ESI计算值[M+H] +543,实测值543。
第四步
将化合物28c(124mg,228μmol)溶于四氢呋喃(4mL)和甲醇(2mL)中,向混合液中加入一水合氢氧化锂(28.8mg,685μmol)水(1mL)溶液,反应液在20℃下搅拌12小时。向反应液中加入1M盐酸水溶液,调节pH约为5。反应液减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75×30mm×3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:30%-50%,7分钟}纯化得到化合物28的盐酸盐。
MS-ESI计算值[M+H] +515,实测值515。
1H NMR(400MHz,MeOH-d 4)δ=8.32-8.25(m,2H),7.92-7.87(m,1H),7.61(d,J=7.2Hz,1H),7.50(t,J=7.7Hz,1H),7.39(d,J=8.9Hz,1H),4.95-4.91(m,1H),4.13-3.80(m,2H),3.71-3.46(m,4H),3.44-3.37(m,2H),2.55-2.25(m,4H),1.55-1.49(m,2H),1.45(d,J=6.0Hz,6H),1.22-1.19(m,2H)。
实施例29
Figure PCTCN2021078742-appb-000114
合成路线:
Figure PCTCN2021078742-appb-000115
第一步
将化合物12d(139mg,603μmol)溶于无水N,N-二甲基甲酰胺(3mL)中,向混合液中加入1-羟基苯并三唑(97.9mg,724μmol),1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(138mg,724μmol),反应液在25℃下搅拌1小时,向反应液中加入化合物1m(200mg,603μmol),反应液在25℃下搅拌1小时,将反应液在80℃下继续搅拌12小时。减压浓缩,向剩余物中加入水(100mL),用二氯甲烷(50mL×3)萃取,合并有机相,有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,粗产品经薄层色谱纯化(1:1,石油醚/乙酸乙酯)得到化合物29a。
MS-ESI计算值[M+H-tBu] +470,实测值470。
1H NMR(400MHz,CDCl 3)δ=8.44(s,1H),8.27(dd,J=8.8,2.2Hz,1H),8.09(dd,J=7.6,1.2Hz,1H),7.39(t,J=7.6Hz,1H),7.33(d,J=7.2Hz,1H),7.09(d,J=8.8Hz,1H),6.99(t,J=55.4Hz,1H),4.84-4.71(m,1H),3.74-3.36(m,6H),2.28-2.09(m,3H),2.02-1.94(m,1H),1.54-1.47(m,9H),1.44(d,J=5.9Hz,6H)。
第二步
将化合物29a(200mg,380μmol)溶于二氧六环(1mL)中,向混合液中加入盐酸二氧六环溶液(4M,2.85mL),反应液在25摄氏度下搅拌1小时,减压浓缩,减压干燥得到化合物29b的盐酸盐。
MS-ESI计算值[M+H] +426,实测值426。
第三步
将化合物29b的盐酸盐(156mg,367μmol)和化合物22b(78.3mg,551μmol)溶于二氯甲烷(2mL)中,向混合液中加入冰醋酸(22.1mg,367μmol),反应液在15℃下搅拌13小时,向反应液中加入三乙酰氧基硼氢化钠(156mg,735μmol),反应液在15℃下搅拌1小时。使用10%碳酸氢钠溶液调节pH约为9,并向反应液中加入水(100mL)稀释,随后用二氯甲烷(50mL×3)萃取,合并有机相,有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,浓缩得到化合物29c。
MS-ESI计算值[M+H] +552,实测值552。
第四步
将化合物29c(137mg,248μmol)溶于无水四氢呋喃(2mL)中,向混合液中加入溶有氢氧化钠(39.7mg,993μmol)的水(0.5mL)溶液,反应液在20℃下搅拌12小时。使用1N盐酸溶液调节反应液pH约为5,减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C1875*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:37%-57%,7分钟}纯化得到化合物29的盐酸盐。
MS-ESI计算值[M+H] +524,实测值524。
1H NMR(400MHz,CDCl 3)δ=8.38(s,1H),8.22(d,J=8.6Hz,1H),8.08(d,J=7.1Hz,1H),7.88(br s,1H),7.42(br s,1H),7.07(d,J=8.8Hz,1H),6.96(t,J=55.5Hz,1H),4.82-4.67(m,1H),4.36-3.15(m,10H),2.83-2.06(m,4H),1.77-1.48(m,2H),1.43(d,J=8.6Hz,6H)。
实施例30
Figure PCTCN2021078742-appb-000116
合成路线:
Figure PCTCN2021078742-appb-000117
第一步
将化合物10c(156mg,603μmol)溶于无水N,N-二甲基甲酰胺(3mL)中,向混合液中加入1-羟基苯并三唑(97.9mg,724μmol),1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(138mg,724μmol),反应液在25℃下搅拌1小时,向反应液中加入化合物1m(200mg,603μmol),反应液在25℃下搅拌1小时,将反应液在80℃下继续搅拌12小时。减压浓缩,向反应液中加入水(100mL),用二氯甲烷(50mL×3)萃取,合并有机相,有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,粗产品经薄层色谱法纯化(1:1,石油醚/乙酸乙酯)得到化合物30a。
MS-ESI计算值[M+H- tBu] +498和500,实测值498和500。
1H NMR(400MHz,CDCl 3)δ=8.43(d,J=2.0Hz,1H),8.16-8.01(m,2H),7.44-7.30(m,2H),7.03(d,J=8.8Hz,1H),4.78-4.68(m,1H),3.75-3.31(m,6H),2.31-1.94(m,4H),1.58-1.41(m,15H)。
第二步
将化合物30a(100mg,180μmol)溶于二氧六环(1mL)中,向混合液中加入盐酸二氧六环溶液(4M,1.35mL),反应液在25℃下搅拌1小时,减压浓缩得到化合物30b的盐酸盐。
MS-ESI计算值[M+H] +454和456,实测值454和456。
第三步
将化合物30b的盐酸盐(70.0mg,143μmol)和化合物22b(30.4mg,214μmol)溶于二氯甲烷(1mL)中,向混合液中加入冰醋酸(8.56mg,143μmol),反应液在15℃下搅拌13小时,向反应液中加入三乙酰氧基硼氢化钠(60.4mg,343μmol),反应液在15℃下搅拌1小时。使用10%碳酸氢钠溶液调节pH约为9,并向反应液中加入水(100mL)稀释,随后用二氯甲烷(50mL×3)萃取,合并有机相, 有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,浓缩得到化合物30c。
MS-ESI计算值[M+H] +580和582,实测值580和582。
第四步
将化合物30c(60mg,248μmol)溶于无水四氢呋喃(2mL)中,向混合液中加入溶有氢氧化钠(16.5mg,413μmol)的水(0.5mL)溶液,反应液在20℃下搅拌12小时。用1N盐酸溶液调节反应液pH约为5,减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C18 75*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:43%-63%,7分装}纯化得到化合物30的盐酸盐。
MS-ESI计算值[M+H] +552和554,实测值552和554。
1H NMR(400MHz,CDCl 3)δ=8.37(s,1H),8.12-8.03(m,2H),7.98-7.78(m,1H),7.50-7.36(m,1H),7.01(d,J=8.6Hz,1H),4.81-4.65(m,1H),4.32-2.79(m,10H),2.60-2.08(m,4H),1.75-1.42(m,2H),1.46(d,J=5.8Hz,6H)。
实施例31
Figure PCTCN2021078742-appb-000118
合成路线:
Figure PCTCN2021078742-appb-000119
第一步
将化合物9c(140mg,603μmol)溶于无水N,N-二甲基甲酰胺(3mL)中,向混合液中加入1-羟基苯并三唑(97.9mg,724μmol),1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(138mg,724μmol),反应液在25℃下搅拌1小时,向反应液中加入化合物1m(200mg,603μmol),反应液在25℃下搅拌1小时,将反应液在80℃下继续搅拌12小时。减压浓缩,向反应液中加入水(100mL),用二氯甲烷(50mL× 3)萃取,合并有机相,有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,粗产品经薄层色谱法纯化(1:1,石油醚/乙酸乙酯,Rf=0.80)得到化合物31a。
MS-ESI计算值[M+H- tBu] +471,实测值471。
第二步
将化合物31a(300mg,570μmol)溶于二氧六环(2mL)中,向混合液中加入盐酸二氧六环溶液(4M,4.27mL),反应液在25℃下搅拌1小时,减压浓缩得到化合物31b的盐酸盐。
MS-ESI计算值[M+H] +427,实测值427。
第三步
将化合物31b的盐酸盐(200mg,431μmol)和化合物22b(123mg,864μmol)溶于二氯甲烷(2mL)中,向混合液中加入冰醋酸(25.9mg,431μmol),反应液在15℃下搅拌13小时,向反应液中加入三乙酰氧基硼氢化钠(183mg,864μmol),反应液在15℃下搅拌1小时。使用10%碳酸氢钠溶液调节pH约为9,并向反应液中加入水(100mL)稀释,随后用二氯甲烷(50mL×3)萃取,合并有机相,有机相用饱和食盐水(30mL×3)洗涤,无水硫酸钠干燥,浓缩得到化合物31c。
MS-ESI计算值[M+H] +553,实测值553。
第四步
将化合物31c(20mg,36.2μmol)溶于无水二氧六环(0.8mL)中,向混合液中加入溶有无水氢氧化锂(3.04mg,72.4μmol))的水(0.2mL)溶液,反应液在28℃下搅拌2小时。调节反应液pH约为5,减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:Phenomenex luna C18 150*25mm*10μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:29%-59%,10分钟}纯化得到化合物31的盐酸盐。
MS-ESI计算值[M+H] +525,实测值525。
1H NMR(400MHz,CDCl 3)δ=8.42-8.28(m,2H),8.07(d,J=7.8Hz,1H),7.49-7.38(m,1H),7.14(d,J=8.8Hz,1H),5.04-4.95(m,1H),3.53-3.19(m,6H),2.49-0.73(m,18H)。
实施例32
Figure PCTCN2021078742-appb-000120
合成路线:
Figure PCTCN2021078742-appb-000121
第一步
将化合物8g(790mg,3.83mmol)溶于无水N,N-二甲基甲酰胺(10mL)中,向混合液中加入1-羟基苯并三唑(621mg,4.60mmol),1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(881mg,4.60mmol),反应液在25℃下搅拌1小时,向反应液中加入化合物1m(1.27g,3.83mmol),反应液在25℃下搅拌1小时,将反应液在80℃下继续搅拌8小时。向反应液中加入80mL水,用乙酸乙酯(60mL×3)萃取,合并有机相,有机相用饱和食盐水(60mL×2)洗涤,无水硫酸钠干燥,浓缩得到化合物32a。
MS-ESI计算值[M+H-tBu] +446,实测值446。
第二步
将化合物32a(1.93g,2.74mmol)溶于乙酸乙酯(30mL)中,向混合液中加入盐酸/乙酸乙酯(4M,6.85mL),反应液在25℃下搅拌1小时,减压浓缩得到化合物32b的盐酸盐。
MS-ESI计算值[M+H] +402,实测值402。
第三步
将化合物32b的盐酸盐(100mg,228μmol)和化合物22b(48.7mg,343μmol)溶于二氯甲烷(5mL)中,向混合液中加入冰醋酸(13.7mg,228μmol),反应液在20℃下搅拌8小时,向反应液中加入三乙酰氧基硼氢化钠(96.8mg,457μmol),反应液在20℃下搅拌10小时。减压除去溶剂,向剩余物中加入10%碳酸氢钠(20mL)水溶液,用二氯甲烷(30mL×2)萃取,合并有机相,有机相用水(30mL)和饱和食盐水(30mL)洗涤,无水硫酸钠干燥,浓缩得到化合物32c。
MS-ESI计算值[M+H] +528,实测值528。
第四步
将化合物32c(125mg,237μmol)溶于无水四氢呋喃(6mL)中,向混合液中加入溶有氢氧化钠(37.9mg,948μmol)的甲醇(3mL)溶液,反应液在20℃下搅拌12小时。使用12N HCl溶液调节反应液pH=5,浓缩除去溶剂,粗品经高效液相色谱法{盐酸条件,柱型号:3_Phenomenex Luna C1875*30mm*3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:43%-63%,7分钟}纯化得到化合物32的盐酸盐。
MS-ESI计算值[M+H] +500,实测值500。
1H NMR(400MHz,CDCl 3)δ=9.16(d,J=2.5Hz,1H),8.64(d,J=2.3Hz,1H),8.10(d,J=7.8Hz,1H),7.52-7.42(m,1H),7.28-7.25(m,1H),5.63-5.54(m,1H),3.68-3.20(m,6H),2.63-1.55(m,8H),1.49(d,J=6.3Hz,6H),1.41-1.19(m,2H)。
实施例33
Figure PCTCN2021078742-appb-000122
合成路线:
Figure PCTCN2021078742-appb-000123
第一步
将化合物13d(150mg,731μmol)溶于无水N,N-二甲基甲酰胺(15mL)中,向混合液中加入1-羟基苯并三唑(118mg,877μmol),1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(168mg,877μmol),反应液在25℃下搅拌1小时,向反应液中加入化合物1m(242mg,730μmol),反应液在25℃下搅拌2小时,将反应液在80℃下继续搅拌8小时。减压除去溶剂,向反应液中加入20mL水,用乙酸乙酯(30mL×2)萃取,合并有机相,有机相用水(20mL)饱和食盐水(20mL)洗涤,无水硫酸钠干燥,粗品经硅胶柱层析法(2:1,石油醚/乙酸乙酯)得到化合物33a。
MS-ESI计算值[M+H-tBu] +445,实测值445。
第二步
将化合物33a(208mg,415μmol)溶于乙酸乙酯(2mL)中,向混合液中加入盐酸/乙酸乙酯(4M,0.52mL),反应液在25℃下搅拌1小时,减压除去溶剂,干燥得到化合物33b的盐酸盐。
MS-ESI计算值[M+H] +401,实测值401。
第三步
将化合物33b的盐酸盐(50mg,0.11mmol)和化合物22b(40.6mg,286μmol)溶于二氯甲烷(5mL)中,向混合液中加入冰醋酸(6.87mg,114μmol),反应液在25℃下搅拌8小时,向反应液中加入三乙酰氧基硼氢化钠(48.5mg,228μmol),反应液在25℃下搅拌6小时。向反应液中加入10%碳酸氢钠水溶液(10mL),用二氯甲烷(10mL×3)萃取,合并有机相,有机相用水(20mL)饱和食盐水(20mL)洗涤,无水硫酸钠干燥,浓缩后粗品经薄层硅胶层析法纯化(0:1,石油醚/乙酸乙酯)得到化合物33c。MS-ESI计算值[M+H] +527,实测值527。
第四步
将化合物33c(53mg,0.10mmol)溶于无水四氢呋喃(6mL)和无水甲醇(3mL)中,向混合液中加入溶有一水合氢氧化锂(12.6mg,301μmol)的水(1.5mL)溶液,反应液在25℃下搅拌12小时。用12N HCl调节反应液pH=5,减压浓缩,得到化合物33d。
MS-ESI计算值[M+H] +517,实测值517。
第五步
将化合物33d(51mg,99μmol)溶于无水二氯甲烷(3mL)中,向混合液中加入三乙胺(19.9mg,197μmol)和三氟乙酸酐(20.8mg,108μmol),反应液在0℃下搅拌1小时,向反应液中加入1M HCl水溶液,调节pH=5,减压浓缩,粗产品经高效液相色谱法{盐酸条件,柱型号:Boston Green ODS150*30mm*5μm;流动相:[水(0.05%盐酸)-乙腈];乙腈%:32%-62%,8分钟}纯化得到化合物33的盐酸盐。
MS-ESI计算值[M+H] +499,实测值499。
1H NMR(400MHz,CDCl 3)δ=11.86-11.55(m,1H),9.08(s,1H),8.40(s,1H),8.05(d,J=7.5Hz,1H),7.92(d,J=7.0Hz,1H),7.48-7.37(m,1H),5.64-5.48(m,1H),4.58-4.44(m,1H),4.31-3.84(m,2H),3.65-3.10(m,6H),2.60-2.07(m,4H),1.86-1.48(m,4H),1.35(d,J=6.5Hz,6H)。
实施例34
Figure PCTCN2021078742-appb-000124
合成路线:
Figure PCTCN2021078742-appb-000125
第一步
将化合物17c(100mg,469μmol)溶于无水N,N-二甲基甲酰胺(10mL)中,向混合液中加入1-羟基苯并三唑(76.1mg,563μmol),1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(107mg,563μmol),反应液在25℃下搅拌1小时,向反应液中加入化合物1m(155mg,469μmol),反应液在25℃下搅拌2小时,将反应液在80℃下继续搅拌8小时。减压浓缩,向剩余物中加入20mL水稀释,用乙酸乙酯(30mL×2)萃取,合并有机相,有机相用水(20mL)饱和食盐水(20mL)洗涤,无水硫酸钠干燥,浓缩得到化合物34a。
MS-ESI计算值[M+H-tBu] +453,实测值453。
第二步
将化合物34a(314mg,617μmol)溶于乙酸乙酯(2mL)中,向混合液中加入盐酸/乙酸乙酯(4M,0.77mL),反应液在25℃下搅拌1小时,减压浓缩得到化合物34b的盐酸盐。
MS-ESI计算值[M+H] +409,实测值409。
第三步
将化合物34b的盐酸盐(70mg,0.16mmol)和化合物22b(44.7mg,314μmol)溶于二氯甲烷(5mL)中,向反应液中加入冰醋酸(9.5mg,0.16mmol),反应液在25℃下搅拌8小时,向反应液中加入三乙酰氧基硼氢化钠(133mg,629μmol),反应液在25℃下搅拌6小时。向反应液中加入10%碳酸氢钠水溶液(10mL),用二氯甲烷(10mL×3)萃取,合并有机相,有机相用水(20mL)饱和食盐水(20mL)洗涤,无水硫酸钠干燥,浓缩后粗品经薄层硅胶层析法纯化(0:1,石油醚/乙酸乙酯)得到化合物34c。MS-ESI计算值[M+H] +535,实测值535。
第四步
将化合物34c(88mg,0.16mmol)溶于无水四氢呋喃(10mL)中,向混合液中加入溶有一水合氢氧化锂(20.7mg,493μmol)的水(2.5mL)溶液,反应液在25℃下搅拌12小时。使用12N HCl调节反应液pH=5,减压浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:Venusil ASB Phenyl 150*30mm*5μm;流动相:[水(0.05%盐酸)-乙腈];乙腈%:42%-52%,9分钟}纯化得到化合物34的盐酸盐。
MS-ESI计算值[M+H] +507,实测值507。
1H NMR(400MHz,CDCl 3)δ=12.11-11.84(m,1H),8.53(d,J=7.5Hz,1H),8.43(d,J=8.0Hz,1H),8.14-8.05(m,1H),8.04-7.92(m,1H),7.60-7.53(m,1H),7.50-7.42(m,1H),6.79(t,J=70.8Hz,1H),4.36-3.83(m,2H),3.65-3.18(m,6H),2.62-2.21(m,4H),1.75-1.56(m,4H)。
实施例35
Figure PCTCN2021078742-appb-000126
合成路线:
Figure PCTCN2021078742-appb-000127
第一步
将化合物35a(50mg,0.27mmol)溶于无水二氯甲烷(5mL)中,向混合液中加入戴斯马丁氧化剂(181mg,427μmol),反应液在20℃下搅拌1小时,向反应液中加入10%碳酸氢钠水溶液(10mL)。用二氯甲烷(10mL×3)萃取,合并有机相,有机相用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,减压浓缩后粗品经薄层硅胶层析法纯化(2:1,石油醚/乙酸乙酯)得到化合物35b。
1H NMR(400MHz,CDCl 3)δ=9.15(s,1H),5.24(s,1H),1.53-1.42(m,4H),1.48(s,9H)。
第二步
将化合物1o的盐酸盐(100mg,228μmol)和化合物35b(63.6mg,343μmol)溶于二氯甲烷(10mL)中,向混合液中加入冰醋酸(13.7mg,228μmol),反应液在25℃下搅拌8小时,向反应液中加入三乙酰氧基硼氢化钠(194mg,915μmol),反应液在25℃下搅拌6小时。向反应液中加入10%碳酸氢钠水溶液(10mL),用二氯甲烷(10mL×3)萃取,合并有机相,有机相用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,减压浓缩后粗品经薄层硅胶层析法纯化(0:1,石油醚/乙酸乙酯)得到化合物35c。
MS-ESI计算值[M+H] +570,实测值570。
第三步
将化合物35c(100mg,175μmol)溶于乙酸乙酯(5mL)中,向混合液中加入盐酸/乙酸乙酯(4M,219μL)溶液,反应液在25℃下搅拌2小时。浓缩浓缩,粗品经高效液相色谱法{盐酸条件,柱型号:Boston Green ODS 150*30mm*5μm;流动相:[水(0.05%盐酸)-乙腈];乙腈%:17%- 47%,8分钟}纯化得到化合物35的盐酸盐。
MS-ESI计算值[M+H] +470,实测值470。
1H NMR(400MHz,DMSO-d 6)δ=8.78-8.66(m,1H),8.63-8.54(m,1H),8.41(dd,J=9.0,2.1Hz,1H),8.08-7.98(m,1H),7.61-7.47(m,2H),5.05-4.92(m,1H),4.38-3.08(m,8H),2.65-1.84(m,8H),1.39(d,J=6.0Hz,6H)。
实施例36
Figure PCTCN2021078742-appb-000128
合成路线:
Figure PCTCN2021078742-appb-000129
第一步
将化合物36a(100mg,1.03mmol)溶于无水二氯甲烷(10mL)中,向混合液中加入戴斯马丁氧化剂(699mg,1.65mmol),反应液在20℃下搅拌1小时,向反应液中加入10%碳酸氢钠水溶液(10mL)。用二氯甲烷(10mL×3)萃取,合并有机相,有机相用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,减压浓缩后粗品经薄板硅胶色谱法纯化(1:1,石油醚/乙酸乙酯)得到化合物36b。
1H NMR(400MHz,CDCl 3)δ=9.33(s,1H),1.82-1.72(m,4H)。
第二步
将化合物1o(70mg,0.16mmol)和化合物36b(22.8mg,240μmol)溶于二氯甲烷(8mL)中,向反应液中加入冰醋酸(1.92mg,32.0μmol),反应液在25℃下搅拌8小时,向反应液中加入三乙酰氧基硼氢化钠(136mg,640μmol),反应液在25℃下搅拌6小时。向反应液中加入10%碳酸氢钠水溶液(10mL),用二氯甲烷(10mL×3)萃取,合并有机相,有机相用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,减压浓缩后粗品经高效液相色谱法{盐酸条件,柱型号:Venusil ASB Phenyl 150*30mm*5μm;流动相:[水(0.05%盐酸)-乙腈];乙腈%:45%-55%,9分钟}纯化得到化合物36的盐酸盐。
MS-ESI计算值[M+H] +480,实测值480。
实施例37
Figure PCTCN2021078742-appb-000130
合成路线:
Figure PCTCN2021078742-appb-000131
第一步
将化合物37a(2.00g,7.43mmol),化合物37b(983mg,7.81mmol),1,1-双(二苯基磷)二茂铁氯化钯(272mg,372μmol)和碳酸钾(2.06g,14.9mmol)溶于正丁醇(20mL)中,氮气保护下,反应液在100℃下搅拌12小时。反应混合物过滤浓缩,粗品用水(40mL)稀释,用乙酸乙酯(40mL×2)萃取,合并的有机相用饱和食盐水(40mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层硅胶色谱法分离(10:1~3:1,石油醚/乙酸乙酯,V/V),得到化合物37c。
MS-ESI计算值[M-H] +269,实测值269。
第二步
将化合物37c(700mg,2.59mmol)溶于甲醇(15mL)中,氮气保护下向反应液加入湿钯碳(70.0mg,10%纯度),反应混合物在50℃在氢气(1MPa)氛围下搅拌16小时。反应混合物过滤浓缩得到化合物37d。
MS-ESI计算值[M-H] +271,实测值271。
第三步
将化合物1l(10.3g,34.5mmol)溶于乙酸乙酯(50mL)中,向混合液中加入盐酸/乙酸乙酯(4M, 80mL),反应液在25℃下搅拌0.5小时。反应液减压浓缩得到化合物37e的盐酸盐。
MS-ESI计算值[M+H] +199,实测值199。
第四步
将化合物37e的盐酸盐(10.0g,42.6mmol)溶于二氯甲烷(100mL)中,向反应液加入醋酸(42.6mmol,2.44mL)和化合物22b(18.2g,128mmol),反应液在25℃下搅拌1小时。向反应液中加入醋酸硼氢化钠(27.1g,128mmol),反应液在25℃下搅拌1小时。粗品加水(200mL)稀释,用二氯甲烷(100mL×2)萃取,合并的有机相无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层硅胶色谱法分离(200:1~20:1,二氯甲烷/甲醇,V/V)得到化合物37f。
MS-ESI计算值[M+H] +325,实测值325。
第五步
将化合物37f(12.7g,39.2mmol)溶于无水乙醇(150mL)中,向混合液中加入盐酸羟胺(8.16g,117mmol)和三乙胺(16.4mL,117mmol),反应液在80℃下搅拌5小时。反应液减压浓缩,粗品经高效液相色谱法(色谱柱:Phenomenex Synergi Max-RP 250×50mm×10μm;流动相:[水(0.1%TFA)-乙腈];乙腈%:1%-20%,20min)纯化得到化合物37g的三氟乙酸盐。
MS-ESI计算值[M+H] +358,实测值358。
第六步
将化合物37d(693mg,2.55mmol)溶于N,N-二甲基甲酰胺(20mL)中,向混合液中加入1-羟基苯并三唑(413mg,3.05mmol)和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(586mg,3.05mmol)。反应液在20℃下搅拌1小时,向混合液中加入化合物37g的三氟乙酸盐(1.20g,2.55mmol),反应液在20℃下搅拌2小时,在80℃下搅拌8小时。加水(100mL)稀释,用乙酸乙酯(40mL×2)萃取,合并的有机相无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层硅胶色谱法分离(1:0~20:1,二氯甲烷/甲醇,V/V)得到化合物37h。
MS-ESI计算值[M+H] +594,实测值594。
第七步
将化合物37h(400mg,416μmol)溶于四氢呋喃(5mL),甲醇(5mL)和水(2mL)中,加入一水合氢氧化锂(52.4mg,1.25mmol),反应液在25℃下搅拌12小时。反应液减压浓缩去除有机溶剂,剩余物加水(30ml)稀释,用1N的盐酸水溶液调节pH=3,乙酸乙酯(30mL×2)萃取,合并有机相用无水硫酸钠干燥,过滤浓缩,粗品经高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75×30mm×3um;流动相:[水(0.225%FA)-乙腈];乙腈%:45%-75%,7min)纯化得到化合物37的甲酸盐。
MS-ESI计算值[M+H] +566,实测值566。
1H NMR(400MHz,CD 3OD)δ=8.47-8.38(m,2H),8.14-8.10(m,1H),7.86(d,J=8.2Hz,1H),7.59(d,J=7.2Hz,1H),7.53-7.47(m,1H),3.73-3.60(m,2H),3.46-3.35(m,4H),3.04(t,J=11.4Hz,1H),2.48-2.29(m,4H),2.00-1.74(m,6H),1.71-1.36(m,6H),1.33-1.26(m,2H),0.89-0.82(m,2H)。
实施例38
Figure PCTCN2021078742-appb-000132
合成路线:
Figure PCTCN2021078742-appb-000133
第一步
将化合物37a(2.00g,7.43mmol),化合物38a(874mg,7.81mmol),1,1-双(二苯基磷)二茂铁氯化钯(272mg,372μmol),碳酸钾(2.05g,14.9mmol)溶于正丁醇(20mL)中,氮气保护下,反应液在100℃下搅拌12小时。反应混合物过滤浓缩,粗品用水(40mL)稀释,用乙酸乙酯(40mL×2)萃取,合并的有机相用饱和食盐水(40mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层硅胶色谱法分离(10:1~3:1,石油醚/乙酸乙酯,V/V),得到化合物38b。
MS-ESI计算值[M-H] +255,实测值255。
第二步
将化合物38b(700mg,2.73mmol)溶于甲醇(15mL)中,氮气保护下向反应液加入湿钯碳(70.0mg,10%纯度),反应混合物在50℃在氢气(1MPa)氛围下搅拌16小时。反应混合物过滤浓缩得到化合物38c。
MS-ESI计算值[M-H] +257,实测值257。
第三步
将化合物38c(300mg,1.16mmol)溶于二氯甲烷(6mL)中,向反应液加入草酰氯(305μL,3.49mmol)和N,N-二甲基甲酰胺(8.49mg,116μmol)。反应液在25℃下搅拌0.5小时,反应液减压浓缩得到化合物38d。
第四步
将化合物38d(317mg,1.15mmol)溶于二氯甲烷(8mL)中,向反应液加入三乙胺(1.91mmol,333μL)和化合物37g的三氟乙酸盐(300mg,636μmol),反应液在25℃下搅拌12小时。加水(20mL)稀释,用二氯甲烷(20mL×2)萃取,合并的有机相无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物38e。
MS-ESI计算值[M+H] +598,实测值598。
第五步
将化合物38e(522mg,873μmol)溶于乙腈(8mL)中,向反应液加入氢氧化钠(34.9mg,873μmol),反应液在25℃下搅拌1小时。反应液减压浓缩,粗品用水(20mL)稀释,用乙酸乙酯(20mL×2)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物38f。
MS-ESI计算值[M+H] +580,实测值580。
第六步
将化合物38f(464mg,800μmol)溶于四氢呋喃(4mL),甲醇(4mL)和水(2mL)中,加入一水合氢氧化锂(101mg,2.40mmol),反应液在25℃下搅拌12小时。反应液减压浓缩去除有机溶剂,剩余物加水(30ml)稀释,用1N的盐酸水溶液调节pH=3,乙酸乙酯(30mL×2)萃取,合并有机相用无水硫酸钠干燥,过滤浓缩,粗品经高效液相色谱法(色谱柱:3_Phenomenex Luna C18 75×30mm×3μm;流动相:[水(0.05%HCl)-乙腈];乙腈%:48%-68%,6.5min)纯化得到化合物38的盐酸盐。
MS-ESI计算值[M+H] +552,实测值552。
1H NMR(400MHz,CD 3OD)δ=8.46-8.39(m,2H),8.17-8.11(m,1H),7.87(d,J=8.4Hz,1H),7.61(d,J=7.4Hz,1H),7.54-7.48(m,1H),3.97(s,2H),3.70-3.37(m,7H),2.58-2.24(m,4H),2.22-2.10(m,2H),2.04-1.91(m,2H),1.86-1.68(m,4H),1.52(d,J=2.4Hz,2H),1.20(s,2H)。
实施例39
Figure PCTCN2021078742-appb-000134
合成路线:
Figure PCTCN2021078742-appb-000135
第一步
将化合物39a(400mg,1.86mmol)溶于二氯甲烷(6mL)中,向反应液加入草酰氯(650μL,7.42mmol)和N,N-二甲基甲酰胺(27.1mg,371μmol)。反应液在25℃下搅拌0.5小时,反应液减压浓缩得到化合物39b。
第二步
将化合物37g的三氟乙酸盐(550mg,1.17mmol),化合物39b(437mg,1.87mmol)溶于二氯甲烷(10mL)中,向反应液加入N,N-二异丙基乙胺(3.50mmol,610μL),反应液在25℃下搅拌1小时。加水(30mL)稀释,用二氯甲烷(20mL×2)萃取,合并的有机相无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物39c。
MS-ESI计算值[M+H] +555,实测值555。
第三步
将化合物39c(800mg,1.44mmol)溶于乙腈(15mL)中,向反应液加入氢氧化钠(115mg,2.88mmol),反应液在25℃下搅拌1小时。反应液减压浓缩,粗品用水(20mL)稀释,用乙酸乙酯(20mL×2)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物39d。
MS-ESI计算值[M+H] +537,实测值537。
第四步
将化合物39d(483mg,899μmol)溶于四氢呋喃(6mL),甲醇(3mL)和水(3mL)中,加入一水合氢氧化锂(113mg,2.70mmol),反应液在25℃下搅拌12小时。反应液减压浓缩,粗品经高效液相色谱法(色谱柱:3_Phenomenex Luna C18 75×30mm×3μm;流动相:0.05%的盐酸水溶液-乙腈;梯度:乙腈39%-59%,6.5min)分离得到化合物39的盐酸盐。
MS-ESI计算值[M+H] +509,实测值509。
1H NMR(400MHz,DMSO-d 6)δ=11.55-9.82(m,1H),8.90(d,J=2.2Hz,1H),8.52(d,J=2.2Hz,1H), 7.99(d,J=7.4Hz,1H),7.77(d,J=7.6Hz,1H),7.50(t,J=7.6Hz,1H),5.47-5.39(m,1H),3.67-3.51(m,3H),3.26-3.16(m,3H),2.34(s,1H),2.29-2.17(m,3H),1.38(d,J=6.2Hz,7H),1.33-1.28(m,3H)。
实施例40
Figure PCTCN2021078742-appb-000136
合成路线:
Figure PCTCN2021078742-appb-000137
第一步
将化合物40a(4.00g,19.8mmol)和[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷(810mg,992μmol)溶于四氢呋喃(20mL)中,氮气置换气体三次,在60℃向反应液加入环戊基溴化锌四氢呋喃溶液(0.5M,39.7mL),反应液在60℃下搅拌12小时。反应液减压浓缩,粗品用1N盐酸溶液(50mL)稀释,甲基叔丁基醚(50mL×3)萃取,合并的有机相用1N盐酸溶液(50mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经薄层硅胶色谱法分离(1:0,石油醚/乙酸乙酯,V/V)得到化合物40b。MS-ESI计算值[M+H] +236,实测值236。
第二步
将化合物40b(2.50g,10.6mmol)溶于乙醇(25mL)和水(5mL)中,加入氢氧化钠(1.27g,31.9mmol),反应液在90℃下搅拌0.5小时。反应液减压浓缩去除有机溶剂,剩余物加水(100mL)稀释,用1N的盐酸水溶液调节pH=4,二氯甲烷(100mL×2)萃取,合并有机相用无水硫酸钠干燥,过滤浓缩,粗品经薄层硅胶色谱法分离(10:1~2:1,石油醚/乙酸乙酯,V/V)得到化合物40c。
MS-ESI计算值[M+H] +222,实测值222。
第三步
将化合物40c(200mg,904μmol)溶于二氯甲烷(5mL)中,向反应液加入草酰氯(237μL,2.71mmol)和N,N-二甲基甲酰胺(6.61mg,90.4μmol)。反应液在25℃下搅拌1小时,反应液减压浓缩得到化合物40d。
第四步
将化合物37g(200mg,560μmol),化合物40d(201mg,839μmol)溶于二氯甲烷(6mL)中,向反应液加入N,N-二异丙基乙胺(839μmol,146μL),反应液在25℃下搅拌2小时。加饱和碳酸氢钠水溶液(50mL)稀释,用乙酸乙酯(40mL×3)萃取,合并的有机相无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经薄层层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物40e。
MS-ESI计算值[M+H] +543,实测值543。
第五步
将化合物40e(68.0mg,125μmol)溶于四氢呋喃(3mL),甲醇(3mL)中,加入1M氢氧化钠水溶液(4.26mL),反应液在50℃下搅拌3小时。反应液冷至25℃,用1N的盐酸水溶液调节pH=4~5,加水(10mL)稀释后减压浓缩除去有机溶剂,水相用二氯甲烷(40mL×3)萃取,合并的有机相无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经高效液相色谱(色谱柱:Phenomenex Gemini-NX C18 75×30mm×3μm;流动相:10mmol/L的碳酸氢铵水溶液-乙腈;梯度:乙腈44%-74%,10min)分离得到化合物40。
MS-ESI计算值[M+H] +515,实测值515。
1HNMR(400MHz,CD 3OD)δ8.11-8.15(m,1H),7.60-7.62(m,1H),7.49-7.54(m,2H),7.30-7.31(m,1H),4.00(s,3H),3.40-3.54(m,7H),2.37-2.40(m,5H),2.09-2.11(m,2H),1.90-1.93(m,5H),1.87-1.89(m,2H),1.44-1.46(m,2H),1.07-1.08(m,2H)。
实施例43
Figure PCTCN2021078742-appb-000138
合成路线:
Figure PCTCN2021078742-appb-000139
第一步
将中间体43a(1000mg,5mmol),碘代乙丙烷(927mg,6mmol)和碳酸银(1250mg,5mmol)加入甲苯(10mL)中。将反应液加热至50℃反应12小时。将反应液加入水(50mL)中,用乙酸乙酯(30mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩并经过硅胶柱层析法(石油醚/乙酸乙酯,100/1~5/1,V/V)分离得到中间体43b。
MS-ESI计算值[M+H] +263,实测值263。
第二步
将中间体43b(1260mg,5mmol),水合氢氧化锂(605mg,14mmol)加入四氢呋喃(12mL)和水(3mL)中。将反应液在室温下反应12小时。将反应液加入水(20mL)中,用乙酸乙酯(20mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到中间体43c。
MS-ESI计算值[M+H] +249,实测值249。
第三步
将中间体1l(400mg,1mmol),中间体43c(300mg,1mmol),1-羟基苯并三唑(196mg,1.5mmol和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(278mg,1.5mmol),加入N-N二甲基甲酰胺(20mL)中。将反应液加热至80℃反应11小时。将反应液加入水(150mL)中,用乙酸乙酯(40mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品化合物43d。
MS-ESI计算值[M+Na] +566,实测值566。
第四步
将化合物43d(815mg,1.5mmol),4M盐酸和乙酸乙酯(1.87mL),加入到乙酸乙酯(6mL)中,反应液在25℃反应1小时。减压浓缩并经薄层硅胶层析法(20:1,石油醚/乙酸乙酯,V/V)分离得到中间体43e的盐酸盐。
MS-ESI计算值[M+H] +444,实测值444。
第五步
将中间体43e的盐酸盐(250mg,564μmol),中间体22b(240mg,1.7mmol)和乙酸(34mg,564μmol),加入二氯甲烷(20mL)中。反应液在25℃下搅拌1小时,向反应液中加入醋酸硼氢化钠(478mg,2.3mmol),反应液在25℃下搅拌13小时将。将反应液加入10%碳酸氢钠溶液(50mL)中,用二氯甲烷(30mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩并经过硅胶柱层析法(石油醚/乙酸乙酯,4/1~1/1,V/V)分离得到中间体43f。
MS-ESI计算值[M+H] +570,实测值570。
第六步
将化合物43f(100mg,176μmol),水合氢氧化锂(22mg,527μmol),加入到四氢呋喃(10mL)和水(2.5mL)中,反应液在25℃反应12小时。减压浓缩得到粗产品。粗品经高效液相色谱(色谱柱:Phenomenex Luna C18 75×30mm×3μm;流动相:0.05%的盐酸水溶液-乙腈;梯度:乙腈38%-58%,6.5min)分离得到化合物43的盐酸盐。
MS-ESI计算值[M+H] +542,实测值542。
1H NMR(400MHz,CD 3OD)δ8.42-8.33(m,2H),8.10(d,J=7.6Hz,1H),7.62(br s,1H),7.53-7.40(m,2H),4.05-3.85(m,2H),3.69-3.55(m,3H),3.53-3.35(m,4H),2.66(s,1H),2.54-2.24(m,4H),1.52(br s,2H),1.42(d,J=6.0Hz,6H),1.30-1.21(m,2H)。
实施例44
Figure PCTCN2021078742-appb-000140
合成路线:
Figure PCTCN2021078742-appb-000141
第一步
将中间体1j(3940mg,16mmol)加入到中间体44a(3000mg,19mmol)中。将反应液加热至25℃反应60小时。反应液减压浓缩并经过硅胶柱层析法(二氯甲烷/甲醇,100/1~100/1,V/V)分离得到中间体44b。
MS-ESI计算值[M+H] +380,382,实测值380,382。
第二步
将化合物44b(1120mg,3mmol)溶于无水N,N-二甲基甲酰胺(25mL)中,加入氰化锌(660mg,5.6mmol),三(二亚苄基丙酮)二钯(81mg,88μmol),2-二叔丁基膦-2′,4′,6′-三异丙基联苯(84mg,177μmol),用氮气置换三次,氮气保护下,反应液在90℃下搅拌12小时,反应结束后浓缩反应液。剩余物加水(140mL)稀释,用乙酸乙酯(50mL×3)萃取,合并有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,浓缩,经硅胶柱层析法(石油醚/乙酸乙酯,1/0~0/1,V/V)分离纯化得到中间体44c。MS-ESI计算值[M+H] +327,实测值327。
第三步
将中间体44c(503mg,1.5mmol),盐酸羟胺(321mg,4.6mmol)和三乙胺(468mg,4.6mmol),加入乙醇(10mL)中。将反应液在80℃下反应4小时。将反应液加入水(50mL)中,用乙酸乙酯(60mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩并经薄层硅胶层析法(20:1,石油醚/乙酸乙酯,V/V)分离得到中间体44d。
MS-ESI计算值[M+H] +360,实测值360。
第四步
将中间体44d(452mg,1mmol),中间体1d(215mg,1mmol),1-羟基苯并三唑(170mg,1.3mmol和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(241mg,1.3mmol),加入N,N-二甲基甲酰胺(30mL)中。将反应液加热至80℃反应11小时。将反应液加入水(120mL)中,用乙酸乙酯(40mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品化合物44e。
MS-ESI计算值[M+H] +529,实测值529。
第五步
将化合物44e(57mg,108μmol)加入到乙酸(149mg,2.5mmol)中,反应液在35℃反应12小时。减压浓缩得到粗产品。粗品经高效液相色谱(色谱柱:Phenomenex Luna C18 75×30mm×3μm;流动相:0.05%的盐酸水溶液-乙腈;梯度:乙腈46%-66%,6.5min)分离得到化合物44的盐酸盐。
MS-ESI计算值[M+H]+489,实测值489。
1H NMR(400MHz,CD 3OD)δ8.36-8.27(m,2H),8.00-7.91(m,1H),7.48-7.29(m,3H),4.96-4.88(m,2H),4.63-4.42(m,1H),4.04-3.51(m,7H),2.33-1.98(m,4H),1.44(d,J=6.0Hz,6H)。
实施例45
Figure PCTCN2021078742-appb-000142
合成路线:
Figure PCTCN2021078742-appb-000143
第一步
将中间体1j(1500mg,5.2mmol)加入到中间体45a(1140mg,7.1mmol)中。将反应液加热至25℃反应30小时。反应液减压浓缩并经过硅胶柱层析法(二氯甲烷/甲醇,100/1~5/1,V/V)分离得到中间体45b。
MS-ESI计算值[M+H] +380,382,实测值380,382。
第二步
将化合物45b(523mg,853μmol)溶于无水N,N-二甲基甲酰胺(6mL)中,向加入氰化锌(242mg,2.1mmol),三(二亚苄基丙酮)二钯(38mg,41μmol)和2-二叔丁基膦-2′,4′,6′-三异丙基联苯(39mg,83μmol),用氮气置换三次,氮气保护下,反应液在90℃下搅拌12小时,反应结束后浓缩反应液。剩余物中加水(10mL)稀释,用乙酸乙酯(20mL×3)萃取,合并有机相用饱和食盐水(30mL)洗涤, 无水硫酸钠干燥,浓缩,经硅胶柱层析法(石油醚/乙酸乙酯,5/1~1/1,V/V)分离纯化得到中间体45c。MS-ESI计算值[M+H] +327,实测值327。
第三步
将中间体45c(103mg,1.5mmol),盐酸羟胺(66mg,947μmol)和三乙胺(96mg,947μmol)加入乙醇(4mL)中。将反应液在80℃下反应12小时。将反应液加入水(30mL)中,用乙酸乙酯(20mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品,粗产品经薄层硅胶层析法(20:1,二氯甲烷/甲醇,V/V)分离得到中间体45d。
MS-ESI计算值[M+H] +360,实测值360。
第四步
将中间体45d(98mg,215μmol),中间体1d(44mg,215μmol),1-羟基苯并三唑(35mg,256μmol和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(50mg,259mmol),加入N,N-二甲基甲酰胺(10mL)中。将反应液加热至80℃反应11小时。将反应液加入水(50mL)中,用乙酸乙酯(20mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品化合物45e。
MS-ESI计算值[M+H] +529,实测值529。
第五步
将化合物45e(70mg,132μmol)加入到乙酸(459mg,3.1mmol)中,反应液在35℃反应12小时。减压浓缩得到粗产品。粗产品经薄层硅胶层析法(20:1,二氯甲烷/甲醇,V/V)分离纯化得到化合物45。
MS-ESI计算值[M+H]+489,实测值489。
1H NMR(400MHz,CDCl 3)δ8.44(d,J=1.7Hz,1H),8.38-8.32(m,1H),8.14-8.07(m,1H),7.45-7.38(m,1H),7.35-7.30(m,1H),7.14(d,J=9.0Hz,1H),4.87-4.75(m,1H),4.47-4.29(m,1H),3.92-3.68(m,6H),3.41(br t,J=7.2Hz,2H),2.36-1.99(m,6H),1.49(d,J=6.1Hz,6H)。
实施例46
Figure PCTCN2021078742-appb-000144
合成路线:
Figure PCTCN2021078742-appb-000145
第一步
将中间体1m(300mg,905μmol),中间体46a(161mg,905μmol),1-羟基苯并三唑(147mg,1.1mmol和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(208mg,1.1mmol)加入至N,N-二甲基甲酰胺(10mL)中。将反应液加热至80℃并搅拌11小时。将反应液加入水(20mL)中,用乙酸乙酯(30mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩经硅胶柱层析法(石油醚/乙酸乙酯,100/1~10/1,V/V)得到的中间体46b。MS-ESI计算值[M+Na] +496,实测值496。
第二步
将化合物46b(260mg,549μmol)和4M盐酸和乙酸乙酯(1mL)加入到乙酸乙酯(2mL)中,反应液在25℃反应1小时。减压浓缩并经薄层硅胶层析法(20:1,二氯甲烷/甲醇)分离纯化得到中间体46c的盐酸盐。
MS-ESI计算值[M+H] +374,实测值374。
第三步
将中间体46c的盐酸盐(205mg,500μmol),中间体22b(142mg,1mmol)和乙酸(30mg,500μmol)加入二氯甲烷(15mL)中,反应液在25℃下搅拌1小时。向反应液中加入醋酸硼氢化钠(424mg,2mmol),反应液在25℃下搅拌13小时。向反应液中加入10%碳酸氢钠溶液(20mL),用二氯甲烷(20mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩并经薄层硅胶层析法(0:1,石油醚/乙酸乙酯,V/V)分离纯化得到中间体46d。
MS-ESI计算值[M+H] +500,实测值500。
第四步
将化合物46d(138mg,276μmol)和水合氢氧化锂(12mg,276μmol),加入到四氢呋喃(20mL)和水(5mL)中,反应液在25℃反应12小时。减压浓缩得到粗产品,粗品经高效液相色谱(色谱柱:Phenomenex Luna C18 75×30mm×3μm;流动相:0.05%的盐酸水溶液-乙腈;梯度:乙腈46%-66%,6.5min)分离得到化合物46的盐酸盐。
MS-ESI计算值[M+H] +472,实测值472。
1H NMR(400MHz,CD 3OD)δ8.17-8.03(m,3H),7.62(d,J=7.6Hz,1H),7.49(t,J=7.6Hz,1H),7.42(d,J=8.3Hz,2H),7.03-7.00(m,1H),3.69-3.54(m,3H),3.41(d,J=5.6Hz,2H),2.66(s,2H),2.61(d,J=7.3Hz,2H),2.46-2.29(m,2H),2.55-2.24(m,1H),2.01-1.89(m,1H),1.56-1.48(m,1H),1.51(d,J=2.5Hz,1H),1.54-1.45(m,1H),1.36-1.26(m,1H),1.22(s,2H),0.95(d,J=6.5Hz,6H)。
测试例1:体外评价本发明化合物对S1PR1激动活性
实验目的:检测化合物对S1PR1激动活性
一.细胞处理
1.按照标准程序将PathHunter细胞株解冻;
2.将细胞接种在20微升的384孔的微孔板,37℃下温育适当时间
二.激动剂
1.对于激动剂测定,细胞与待测样品培养以诱导反应进行;
2.待测储存液以5倍稀释到缓冲液;
3. 5微升的5倍稀释液加入到细胞中,37℃下温育90-180分钟。溶媒浓度为1%。
三.信号检测
1.单次加入12.5微升或15微升50%体积比的PathHunter检测试剂,然后室温温育1小时,生成检测信号;
2.用PerkinElmer EnvisionTM仪器读取微板,进行化学发光信号检测。
四.数据分析
1.使用CBIS数据分析套件(ChemInnovation,CA)进行化合物活性分析;
2.计算公式:
%活性=100%×(平均测试样品RLU-平均溶媒RLU)/(平均最大对照配体-平均溶媒RLU)
实验结果如表1所示:
表1 S1PR1激动活性测试结果
供试品 S1PR1激动活性,Emax
化合物1 0.137nM,122%
化合物3 0.129nM,88.6%
化合物4 0.107nM,99.4%
化合物5 0.0688nM,85.1%
化合物6的盐酸盐 0.865nM,115%
化合物7 0.123nM,90.7%
化合物8 0.188nM,96.8%
化合物9 2.15nM,75.8%
化合物10 1.31nM,101%
化合物11 1.78nM,84.6%
化合物12 0.477nM,87.6%
化合物13 10.7nM,77.8%
化合物14 1.59nM,82.2%
化合物15 2.20nM,98.9%
化合物16 14.4nM,77.8%
化合物17 8.59nM,80.8%
化合物18 4.06nM,84.2%
化合物19 3.25nM,77.8%
化合物20 9.39nM,90.4%
化合物21 21.7nM,70.8%
化合物22的盐酸盐 0.0754nM,118%
化合物23的盐酸盐 0.0353nM,68.3%
化合物24的盐酸盐 4.99nM,87.1%
化合物25的盐酸盐 11.5nM,82.1%
化合物26的盐酸盐 4.47nM,73.8%
化合物27的盐酸盐 9.78nM,63.4%
化合物28的盐酸盐 1.32nM,77.7%
化合物37的甲酸盐 0.047nM,94.1%
化合物38的盐酸盐 0.041nM,100.3%
化合物39的盐酸盐 3.46nM,144.2%
化合物40 2.82nM,101.8%
化合物43的盐酸盐 0.10nM,107.7%
化合物44的盐酸盐 0.72nM,104.3%
化合物45 0.29nM,125.5%
化合物46的盐酸盐 5.76nM,104.8%
结论:本发明化合物均具有显著甚至意料不到的S1PR1激动活性。
测试例2:体外评价本发明化合物对S1PR1激动活性
实验目的:检测化合物对S1PR1激动活性
一.细胞处理
1.将细胞U2OS-EDG1(批号:Invitrogen-K1520)从液氮罐中取出,置于37℃水浴锅中迅速解冻;
2.将细胞悬液吸出置于15mL离心管中,5mL预热培养基重悬,1000rpm离心5min;
3.弃去上清液,10mL培养基重悬,移入T75培养瓶中,于37℃,5%CO 2培养箱中培养。
二.激动剂测定
1.将化合物稀释到工作浓度,通过Echo 555(生产商:Labcyte)将化合物进行3倍稀释,10个浓度,每个浓度转移200nL到细胞板中,1000rpm离心15秒;
2.将培养瓶中的培养基吸出,加4mL杜氏磷酸缓冲液(DPBS,供应商:Coring,货号:21-031-CVR,批号:03318006)洗去残余血清,加2mL胰酶,37℃培养箱中孵育2分钟,消化细胞,加10mL种板培养基重悬细胞,取出0.6mL细胞悬液计数;
3.用种板培养基将细胞密度调整至1.88E+05cells/mL,每孔种40μL(7500\well),细胞板四周加40μL FreeStyle TMExpression培养基,室温静置15分钟,于37℃,5%CO 2培养20小时。
三.信号检测
1.按照说明书配置LiveBLAzer TM-FRET B/G Substrate(CCF4-AM)检测试剂;
2.向细胞板每孔中加8μL 6×Substrate Mixture,1000rpm离心15秒,贴膜,于23℃孵育2小时,Envision化学发光检测。
四.数据分析
1.利用方程式将原始数据换算成%Effect,EC 50的值即可通过四参数进行曲线拟合得出[GraphPad Prism中"log(agonist)vs.response--Variable slope"模式得出];
2.计算公式:
Ratio=(460nm–blank)/(535nm–blank)
%Effect=(Sample Ratio–Ave LC Ratio)/(Ave HC Ratio-Ave LC Ratio)x 100%
实验结果如表2所示:
表2 S1PR1激动活性测试结果
供试品 S1PR1激动活性EC 50,Emax
化合物22A 0.15nM,84.2%
化合物22B 0.32nM,74.0%
化合物29的盐酸盐 0.0211nM,91.5%
化合物30的盐酸盐 0.132nM,103%
化合物31的盐酸盐 0.456nM,101%
化合物32的盐酸盐 1.45nM,95.9%
化合物33的盐酸盐 10.2nM,99.9%
化合物34的盐酸盐 6.07nM,94.9%
结论:本发明化合物均具有显著甚至意料不到的S1PR1激动活性。
测试例3:化合物大鼠药代动力学评价
实验目的:测试化合物在SD大鼠体内药代动力学
实验材料:
Sprague Dawley大鼠(雄性,200-300g,7~9周龄,上海斯莱克)
实验操作:
以标准方案测试化合物静脉注射及口服给药后的啮齿类动物药代特征,实验中候选化合物配成澄清溶液,给予大鼠单次静脉注射及口服给药。静注溶媒为5:95的DMSO和10%羟丙基β环糊精水溶液,口服 溶媒为0.5%w/v的甲基纤维素和0.2%w/v吐温80水溶液。收集24小时内的全血样品,3000g离心15分钟,分离上清得血浆样品,加入4倍体积含内标的乙腈溶液沉淀蛋白,离心取上清液加入等倍体积的水再离心取上清进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度,清除率,半衰期,药时曲线下面积,生物利用度等。
实验结果:
表3药代动力学测试结果
Figure PCTCN2021078742-appb-000146
结论:本发明化合物在SD大鼠药代动力学中表现出较好的生物利用度,较高的药时曲线下面积和较低的清除率。
测试例4:化合物小鼠药代动力学评价
实验目的:测试化合物在CD-1小鼠体内药代动力学
实验材料:
CD-1小鼠(雄性,20-40g,6~10周龄,上海必凯)
实验操作:
以标准方案测试化合物静脉注射及口服给药后的啮齿类动物药代特征,实验中候选化合物配成澄清溶液或混悬液,分别给予两只小鼠单次静脉注射及口服给药。静注溶媒为5:95的DMSO和10%羟丙基β环糊精水溶液,口服溶媒为0.5%w/v的甲基纤维素和0.2%w/v吐温80水溶液。收集24小时内的全血样品,3200g离心10分钟,分离上清得血浆样品,加入4倍体积含内标的乙腈溶液沉淀蛋白,离心取上清液加入等倍体积的水再离心取上清进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度,清除率,半衰期,药时曲线下面积,生物利用度等。
实验结果:
表4药代动力学测试结果
Figure PCTCN2021078742-appb-000147
Figure PCTCN2021078742-appb-000148
结论:本发明化合物在CD-1小鼠药代动力学中表现出较好的生物利用度,较高的药时曲线下面积和较低的清除率。
测试例5:化合物在不同剂量下的大鼠药代动力学评价
实验目的:测试化合物在不同剂量下SD大鼠体内药代动力学
实验材料:
Sprague Dawley大鼠(雄性,200-300g,7~9周龄,上海斯莱克)
实验操作:
以标准方案测试化合物口服给药后SD大鼠体内的药代特征,实验中候选化合物配成澄清溶液,给予大鼠单次口服给药。化合物1溶媒为DMSO:10%羟丙基β环糊精水溶液=5:95。化合物1A和1B溶媒为0.5%的羧甲基纤维素+0.2%吐温80。化合物1、1A和1B收集48小时内的全血样品,3000g离心15分钟,分离上清得血浆样品,加入4倍体积含内标的乙腈溶液沉淀蛋白,离心取上清液加入等倍体积的水再离心取上清进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度,达峰时间,半衰期,药时曲线下面积等。
实验结果如表5所示:
表5药代动力学测试结果
Figure PCTCN2021078742-appb-000149
注:-代表无法确定。
结论:本发明化合物在SD大鼠药代动力学中不同剂量下的系统暴露量增长符合剂量相关线性比例;本发明化合物在SD大鼠药代动力学中均表现出较高的药时曲线下面积和达峰浓度。

Claims (17)

  1. 式(P)所示化合物或其药学上可接受的盐,
    Figure PCTCN2021078742-appb-100001
    其中,
    T 0选自CH-E-R 3和N;
    T 1选自CR 4和N;
    E不存在,或选自O和NH;
    环A选自恶唑基、1,2,4-恶二唑基、噻唑基、1,3,4-噻二唑、1,2,4-噻二唑基、嘧啶基和吡嗪基;
    R 2选自H、F、Cl、Br、CN、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R b取代;
    R 3选自C 1-6烷基、环戊基和环己基,所述C 1-6烷基、环戊基和环己基任选被1、2或3个R c取代;
    R 4选自H和环戊基;
    R 5选自
    Figure PCTCN2021078742-appb-100002
    R 51选自H、OH、NH 2、CN、COOH、CH 2COOH、CH 2OH、C 1-3烷氧基和-S(O) 2-C 1-3烷基,所述C 1-3烷氧基和C 1-3烷基任选被1、2或3个R a取代;
    R 52选自OH、CN、NH 2和COOH;
    R 53选自H和OH;
    R a、R b和R c分别独立地选自F、Cl和Br;
    n选自0和1。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环A选自
    Figure PCTCN2021078742-appb-100003
    Figure PCTCN2021078742-appb-100004
  3. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 2选自H、F、Cl、Br、CN、CH 3和OCH 3,所述CH 3和OCH 3任选被1、2或3个R b取代。
  4. 据权利要求3所述化合物或其药学上可接受的盐,其中,R 2选自H、Br、Cl、CN、CHF 2、CF 3和OCH 3
  5. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 3选自C 1-4烷基、
    Figure PCTCN2021078742-appb-100005
    Figure PCTCN2021078742-appb-100006
    所述C 1-4烷基、
    Figure PCTCN2021078742-appb-100007
    任选被1、2或3个R c取代。
  6. 根据权利要求5所述化合物或其药学上可接受的盐,其中,R 3选自CH(CH 3) 2、CHF 2、CH 2CH(CH 3) 2
    Figure PCTCN2021078742-appb-100008
  7. 根据权利要求1、5或6任意一项所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2021078742-appb-100009
    选自
    Figure PCTCN2021078742-appb-100010
  8. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 51选自H、OH、NH 2、CN、COOH、CH 2COOH、CH 2OH、OCH 3和-S(O) 2CH 3,所述OCH 3和-S(O) 2CH 3任选被1、2或3个R a取代。
  9. 根据权利要求8所述化合物或其药学上可接受的盐,其中,R 51选自OH、NH 2、CN、CH 2COOH、CH 2OH、OCH 3和-S(O) 2CH 3
  10. 根据权利要求1、8或9任意一项所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2021078742-appb-100011
    选自
    Figure PCTCN2021078742-appb-100012
    Figure PCTCN2021078742-appb-100013
  11. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 52选自CN、NH 2和COOH。
  12. 根据权利要求1或11所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2021078742-appb-100014
    选自
    Figure PCTCN2021078742-appb-100015
  13. 根据权利要求1~12任意一项所述化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2021078742-appb-100016
    其中,T 0、T 1、R 53和n如权利要求1所定义;
    环A如权利要求1或2所定义;
    R 2如权利要求1、3或4任意一项所定义;
    R 51如权利要求1、8或9任意一项所定义;
    R 52如权利要求1或11所定义。
  14. 根据权利要求1~12任意一项所述化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2021078742-appb-100017
    其中,
    R 2如权利要求1、3或4任意一项中所定义;
    R 3如权利要求1、5或6任意一项中所定义;
    T 1、E和n如权利要求1所定义;
    T 2选自O和S;
    T 3选自CH和N;
    T 4选自CH,T 5选自N,或T 4选自N,T 5选自CH。
  15. 下式所示化合物或其药学上可接受的盐,
    Figure PCTCN2021078742-appb-100018
    Figure PCTCN2021078742-appb-100019
    Figure PCTCN2021078742-appb-100020
  16. 根据权利要求15所述化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2021078742-appb-100021
  17. 根据权利要求1~16任意一项所述的化合物或其药学上可接受的盐在制备治疗与S1PR1相关疾病的药物中的应用。
PCT/CN2021/078742 2020-03-04 2021-03-02 苯并2-氮杂螺[4.4]壬烷类化合物及其应用 WO2021175223A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180018856.XA CN115279740A (zh) 2020-03-04 2021-03-02 苯并2-氮杂螺[4.4]壬烷类化合物及其应用
US17/905,531 US11760751B2 (en) 2020-03-04 2021-03-02 Benzo 2-azaspiro[4.4]nonane compound and use thereof
JP2022553172A JP7307282B2 (ja) 2020-03-04 2021-03-02 ベンゾ2-アザスピロ[4.4]ノナン系化合物及びその使用
EP21764222.2A EP4116294A1 (en) 2020-03-04 2021-03-02 Benzo 2-azaspiro[4.4]nonane compound and use thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202010144397 2020-03-04
CN202010144397.7 2020-03-04
CN202010144413 2020-03-04
CN202010144413.2 2020-03-04
CN202010464155 2020-05-27
CN202010464132 2020-05-27
CN202010464155.6 2020-05-27
CN202010464132.5 2020-05-27
CN202010902712 2020-09-01
CN202010902712.8 2020-09-01

Publications (1)

Publication Number Publication Date
WO2021175223A1 true WO2021175223A1 (zh) 2021-09-10

Family

ID=77614388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078742 WO2021175223A1 (zh) 2020-03-04 2021-03-02 苯并2-氮杂螺[4.4]壬烷类化合物及其应用

Country Status (5)

Country Link
US (1) US11760751B2 (zh)
EP (1) EP4116294A1 (zh)
JP (1) JP7307282B2 (zh)
CN (1) CN115279740A (zh)
WO (1) WO2021175223A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213935A1 (zh) * 2021-04-09 2022-10-13 南昌弘益药业有限公司 噁二唑取代的螺环类化合物及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471328A (zh) * 2009-07-16 2012-05-23 埃科特莱茵药品有限公司 吡啶-4-基衍生物
CN102762100A (zh) * 2009-11-13 2012-10-31 瑞塞普托斯公司 选择性的1-磷酸鞘氨醇受体调节剂及手性合成方法
WO2012158550A2 (en) * 2011-05-13 2012-11-22 Receptos, Inc. Selective heterocyclic sphingosine 1 phosphate receptor modulators
WO2018157813A1 (zh) * 2017-02-28 2018-09-07 南京明德新药研发股份有限公司 螺环类化合物及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505920A (ja) 2008-10-17 2012-03-08 エグゼリクシス, インコーポレイテッド スフィンゴシン1リン酸塩受容体拮抗薬
TWI522361B (zh) 2010-07-09 2016-02-21 艾伯維公司 作為s1p調節劑的稠合雜環衍生物
CA2996741A1 (en) 2015-08-28 2017-03-09 Udo Lange Fused heterocyclic compounds as s1p modulators
WO2018083171A1 (en) 2016-11-02 2018-05-11 AbbVie Deutschland GmbH & Co. KG Spiro-compounds as s1p modulators
GB201710851D0 (en) 2017-07-06 2017-08-23 Galápagos Nv Novel compounds and pharmaceutical compositions thereof for the treatment of fibrosis
EP3655392A1 (en) 2017-07-17 2020-05-27 Abbvie Deutschland GmbH & Co. KG 1,2,3,4-substituted quinoline compounds as s1p modulators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471328A (zh) * 2009-07-16 2012-05-23 埃科特莱茵药品有限公司 吡啶-4-基衍生物
CN102762100A (zh) * 2009-11-13 2012-10-31 瑞塞普托斯公司 选择性的1-磷酸鞘氨醇受体调节剂及手性合成方法
WO2012158550A2 (en) * 2011-05-13 2012-11-22 Receptos, Inc. Selective heterocyclic sphingosine 1 phosphate receptor modulators
WO2018157813A1 (zh) * 2017-02-28 2018-09-07 南京明德新药研发股份有限公司 螺环类化合物及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213935A1 (zh) * 2021-04-09 2022-10-13 南昌弘益药业有限公司 噁二唑取代的螺环类化合物及其应用

Also Published As

Publication number Publication date
CN115279740A (zh) 2022-11-01
US20230126480A1 (en) 2023-04-27
US11760751B2 (en) 2023-09-19
JP2023506599A (ja) 2023-02-16
EP4116294A1 (en) 2023-01-11
JP7307282B2 (ja) 2023-07-11

Similar Documents

Publication Publication Date Title
CN110248926B (zh) Lsd1抑制剂及其制备方法和应用
WO2018006795A1 (zh) 芳香乙炔或芳香乙烯类化合物、其中间体、制备方法、药物组合物及应用
WO2016112637A1 (zh) Btk抑制剂
TW201725207A (zh) 一種btk激酶抑制劑的結晶形式及其製備方法
WO2020233641A1 (zh) 用作ret激酶抑制剂的化合物及其应用
CN108064224A (zh) 作为Rorγt的调节剂的酰胺取代的噻唑
WO2022166890A1 (zh) 取代的哒嗪苯酚类衍生物
CN114105950B (zh) 吡唑类化合物及其应用
WO2020052649A1 (zh) 作为lsd1抑制剂的环丙胺类化合物及其应用
WO2021208918A1 (zh) 作为egfr抑制剂的三环化合物
WO2022117059A1 (zh) 组织蛋白酶c小分子抑制剂及其医药用途
WO2021115335A1 (zh) 作为周期蛋白依赖性激酶9抑制剂的化合物及其应用
WO2022253101A1 (zh) 作为parp7抑制剂的哒嗪酮类化合物
WO2021058024A1 (zh) Lsd1抑制剂
WO2023284651A1 (zh) N-(2-氨基苯基)苯甲酰胺类化合物及其应用
WO2022188709A1 (zh) 噻吩类化合物及其应用
WO2022199670A1 (zh) 6-氨基甲酸酯取代的杂芳环衍生物
WO2021175223A1 (zh) 苯并2-氮杂螺[4.4]壬烷类化合物及其应用
WO2021129841A1 (zh) 用作ret激酶抑制剂的化合物及其应用
WO2017162157A1 (zh) 内磺酰胺化合物及其使用方法
WO2020063965A1 (zh) 作为选择性Trk抑制剂的吡唑并嘧啶衍生物
TWI782523B (zh) 用作ret激酶抑制劑的化合物及其應用
JP2021530496A (ja) ピロリジニル尿素誘導体とTrkA関連疾患への使用
WO2022199635A1 (zh) 苄氨基喹唑啉类衍生物
CN114746089A (zh) 噻唑甲酰胺化合物及其用于治疗分枝杆菌感染的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021764222

Country of ref document: EP

Effective date: 20221004